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CHAPITRE 1

INTRODUCTION

La pluridisciplinarité constitue un élément moteur de mes recherches. Depuis le début
de ma these, j’interagis avec des spécialistes issus de divers domaines, notamment la santé
publique (épidémiologistes, cliniciens, biostatisticiens) ainsi que des champs théoriques
et/ou appliqués des statistiques. Ma démarche de recherche repose d’abord sur 'analyse
d’un probleme appliqué, souvent lié a une question de santé spécifique, afin de développer
des méthodologies nouvelles permettant d’y répondre de maniere précise. Cette approche
explique la diversité de mes activités de recherche, marquées par des conversions théma-
tiques régulieres, tant sur le plan méthodologique qu’applicatif. Cela se reflete également
dans la variété des concepts abordés dans les différents chapitres, ainsi que dans le nombre
de collaborateurs issus de champs thématiques variés. Cette maniére de pratiquer la re-
cherche définit non seulement mon activité passée, mais oriente aussi mon approche future,
car c’est la voie que je souhaite continuer a suivre. Je tiens ici a remercier profondément

tous mes collaborateurs et a rappeler que ce manuscrit n’existerait pas sans eux.

Trois thématiques principales de mes travaux de recherche peuvent étre distinguées. La
premiere releve de 'intégration de données : 'appariement statistique et le chainage de
données. La deuxieme concerne ’analyse de données de survie dont une partie sur I’analyse
de données chainées. La troisieme partie regroupe différentes contributions en modélisa-
tion pour l'analyse de données médicales telles que I'analyse causale, longitudinale ou
fonctionnelle. Mes différents travaux abordent des thématiques statistiques différentes et
n’ont pas de lien spécifique bien qu’on retrouve des caractéristiques communes telles que
la présence de variables latentes avec 'utilisation de l'algorithme EM pour 'estimation
des parametres du maximum de la vraisemblance. Un titre plus général pourrait étre
"l"'augmentation ou la complétion de données" car il englobe la majorité de mes travaux,
bien qu’il en laisse de co6té une partie non négligeable. Une description des themes qui

seront abordés est détaillée dans la suite de cette introduction.
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Introduction

1.1 Intégration de données

Mon sujet principal de recherche porte sur le développement de méthodes dédiées
a l'intégration de données multi-sources utilisant la théorie du transport optimal qui se
distingue en trois parties : I'appariement statistique en particulier le recodage des variables
(section 1.1.1), Padaptation de domaine (section 1.1.2) et le chainage de données (section
1.1.3).

1.1.1 Recodage des variables

J’ai débuté ce travail sur 'appariement statistique et en particulier le recodage des va-
riables lors de mon deuxiéme post-doctorat, effectué a 'INSERM ! de Toulouse UMR 1295
CERPOP dans 'équipe EQUITY 2. Le probléme de recodage de variables peut se pro-
duire lorsqu’une variable catégorielle n’est pas codée selon la méme échelle dans les deux
sources de données, c’est a dire quand elle a des modalités de terminologies différentes et
de nombres différents. Dans la cohorte ELFE 3, le codage correspondant & 1'état de santé
de la mere a été modifié entre deux vagues de recrutement. L’originalité des méthodes
proposées réside dans 'utilisation de la théorie du transport optimal. Ces travaux ont été
effectués en collaboration avec Nicolas Savy (IMT?, Université Paul Sabatier, Toulouse),
Chloé Dimeglio et Gregory Guernee (INSERM UMR 1295 CERPOP, Toulouse) [VGT7].

J’ai poursuivi ce travail des mon arrivée a 'INSA en tant que maitresse de conférences avec
la collaboration de Jérémy Omer (IRMARS, INSA ¢, Rennes), chercheur en optimisation
[VG2] (avec une application sur les données du NCDS 7). Je poursuis actuellement ces tra-
vaux avec /oana Gavra (IRMAR, Université de Rennes 2), Nicolas Courty, Chloé Friguet
(Université de Bretagne Sud, Vannes) et Pierre Navaro (CNRS, IRMAR, Rennes). La

problématique de recodage des variables est également présente dans les bases de données

1. Institut national de la santé et de la recherche médicale
2. Incorporation biologique, inégalités sociales, épidémiologie du cours de la vie, cancers et maladies
chroniques, interventions, méthodologie
3. Etude Longitudinale Francaise depuis ’'Enfance
Institut de Mathématiques de Toulouse
Institut de recherche mathématique de Rennes
Institut National des sciences appliquées
National Child Development Study

I
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Introduction

dont dispose 'TRSET 8, institut de santé a Rennes : les cohortes EDEN? et PELAGIE °
sont des bases de données d’application pour ces travaux de recherche actuels sur ce sujet

effectués en collaboration avec Nathalie Costel (IRSET, Rennes).

Nous avons également développé un package R (0Trecod) déposé sur le CRAN ! [VGO]

permettant ’accessibilité de ces travaux.

1.1.2 Adaptation de domaine hétérogene

En parallele, depuis 2020, j’ai développé une collaboration avec l’équipe Obélix
(IRISA '?) a Vannes, Nicolas Courty et Chloé Friguet, sur une problématique proche :
I’adaptation de domaine hétérogene. Dans ce cadre, nous avons encadré le stage de Ma-
rion Jeammart. L’objectif de ce travail est de transférer des connaissances d’un domaine
source vers un domaine cible, ou les deux domaines ont des distributions de données diffé-
rentes afin de prédire/expliquer la méme variable d’intérét. De plus, les domaines source
et cible n’ont pas seulement des distributions de données différentes, mais impliquent
également des espaces des variables explicatives distincts. Ces travaux ont été présentés
dans différentes conférences (53°™¢ journées de la Société Francaise de Statistique (2022)

et Journées MAS (2022)) et une publication est en cours de rédaction.

1.1.3 Chainage de données

Cette problématique connexe a émergé a partir de discussions menées au sein d'un
groupe de travail que nous avions mis en place en 2018, réunissant des chercheurs de
I'EHESP 3, d’Agrocampus et de 'ENSAI!. Ces discussions se sont concrétisées par la
mise en place de la these de Huan Tanh Vo entre différents instituts : 'TEHESP, TFIRMAR
et 'IRT ' b-com. Elle a été co-encadrée avec Guillaume Chauvel (CREST 6, ENSAI,

8. Institut de recherche en santé, environnement et travail
9. premiére Etude de cohorte généraliste menée en France sur les Déterminants pré- et postnatals
précoces du développement psychomoteur et de la santé de ’ENfant
10. Perturbateurs Endocriniens : Etude Longitudinale sur les Anomalies de la Grossesse, I'Infertilité et
I’Enfance
11. Comprehensive R Archive Network
12. Institut de Recherche en Informatique et Systémes Aléatoires
13. Ecole des hautes études en santé publique
14. Ecole Nationale de la Statistique et de I’Analyse de I'Information
15. Institut de recherche technologique
16. Center for Research in Economics and Statistics
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Rennes), Andre Happe (Université de Rennes 1) et Stephane Paquelet (IRT beom). Ces

travaux englobent deux problématiques :

1. le chainage du registre GETBO'7 et des données du Systéme National des Données
de Santé (SNDS) afin d’enrichir I'information du registre [VG14],

2. la prise en compte de 'erreur due au chainage dans les analyses de données de survie

(qui sera présentée dans la section 1.2.3 en "Analyse de données de survie") [VG13].

1.2 Analyse de données de survie

Mes travaux de these et de post-doctorat ont été motivés par une problématique
statistique soulevée lors de 'analyse d'un essai clinique et ont principalement porté sur
I'analyse de durée de vie (sections 1.2.1 et 1.2.2). La derniere partie concerne l’analyse de

données de survie de données chainées (introduite section 1.1.3).

1.2.1 Analyses de survie des essais de prévention

Au cours de ma these effectuée a FINSERM UMR 1295 CERPOP a Toulouse dans
I’équipe "Vieillissement et maladie d’Alzheimer" sous la supervision de Nicolas Savy et
Sandrine Andrieu, j’ai travaillé sur les tests statistiques dédiés a la détection des effets

tardifs d’un traitement dans le cadre d’essais cliniques de prévention de la maladie d’Alz-

heimer [VG6, VG3, VGA4].

1.2.2 Risques compétitifs en analyse de survie

A Tissue de mon travail de these, j'ai effectué un post-doctorat au Centre des es-
sais cliniques NHMRC ' & l'université de Sydney en Australie ol mes travaux se sont
principalement concentrés sur l'analyse des risques compétitifs appliquée a la survie de
cancers. Ces travaux ont été réalisés en collaboration avec Malcolm Hudson (Macquarie
University, Sydney), Val Gebski (NHMRC, University of Sydney) et Maurizio Manuguerra
(Macquarie University, Sydney) [VG5].

17. Groupe d’étude de la Thrombose de Bretagne Occidentale
18. National Health and Medical Research Council
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1.2.3 Analyses de données de survie de données appariées

Comme évoquée dans la section 1.1.3, la seconde partie de la these de Huan Vo Tanh
concernait l’analyse statistique des données appariées quand la variable d’intérét était
une durée de vie. Avec Jean-Francois Dupuy (IRMAR, INSA, Rennes) et Samuel Bowong
(Université de Douala, Cameroun), nous poursuivons ces travaux dans le cadre de la these
de Vanessa Chezeu que nous avons rencontrée lors d'une école CIMPA ' au Sénégal. Cette

theése est en co-tutelle avec le Cameroun.

1.3 Diverses contributions pour ’analyse de données

meédicales

En parallele de ces deux principaux sujets, j’ai travaillé sur différents thémes, en parti-
culier I'analyse causale (section 1.3.1), 'analyse de données longitudinales (section 1.3.2)

et fonctionnelles (section 1.3.3).

1.3.1 Analyse causale : estimateur de variance pour le score de
propension généralisé

J'ai développé une collaboration avec David Hajoge (APHP 20, Paris) et Guillaume

Chauvet  portant sur l'estimation de variance pour le score de propension généralisé

VG1].

1.3.2 Analyse de données longitudinales avec valeurs atypiques :

estimation robuste des modéeles mixtes

J’ai également collaboré avec Anne Ruiz-Gazen (Toulouse School of economics) et Rk
Lopuhad (Delft University of Technology) sur I'estimation robuste pour les modeles mixtes

utilisés dans le cadre de 'analyse de données longitudinales avec des valeurs atypiques

VG12).

19. Centre International de Mathématiques Pures et Appliquées
20. Assistance Publique — Hopitaux de Paris
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1.3.3 Analyse de données fonctionnelles

Je collabore actuellement avec Valérie Monbet (IRMAR, Université de Rennes 1) et
Madison Giacofer (IRMAR, Université de Rennes 2) sur une nouvelle thématique : la
modélisation des données fonctionnelles. En particulier, nous avons développé un modele

de mélange pour I’analyse canonique des corrélations sur données fonctionnelles.

1.4 Conseils méthodologiques pour I’épidémiologie

Durant la these et les deux contrats post-doctoraux, j’'ai partagé ma recherche entre
la statistique et 1’épidémiologie. En épidémiologie, j’ai notamment participé a 1’écriture
de plusieurs articles scientifiques en y apportant mes compétences sur la méthodologie
[VGa3, VGal, VGab]. J'ai également réalisé les analyses statistiques de différents articles
[VGa8, VGa2]. Dans le domaine de I’épidémiologie sociale, en collaboration avec Cyrille
Delpierre et Michelle Kelly-Irving (et coauteurs, INSERM UMR 1295 CERPOP équipe
EQUITY), j’ai publié un article en premier auteur mesurant ’association entre 1’environ-
nement social précoce et 'infection par le virus Epstein Barr dans la cohorte "Millennium
Cohort Study" [VGa4]. Un autre travail en collaboration avec Emma Gibbs, Val Gebski et
Karen Byth (NHMRC, Université de Sydney), propose une méthodologie sur 'estimation
d’un nombre acceptable de sujets a risques pour garantir une interprétation fiable d’une
courbe de Kaplan-Meier. En effet, cette question s’est posée a l'issue de mon travail de
these, en particulier dans le cadre de I’étude Guidage sur laquelle nous avons travaillé. En
fin d’étude, des effets tardifs du traitement étaient visibles sur le graphique comparant
les courbes de Kaplan-Meier des groupes traitement et placebo, alors que peu de sujets a
risque restaient dans I'analyse. Ce travail a été publié dans une revue plus appliquée de
santé publique afin de fournir un outil facilement exploitable par les épidémiologistes du

domaine [VGS].

Avec Jean-Francois Dupuy, nous avons apporté nos compétences sur la méthodologie d’une
étude portant sur l'effet de la pollution de lair sur le risque de cancer [VGa6, VGa7] (en-
cadrée par des chercheurs de 'IRSET, Emeline Lequy et Benedicte Jacquemin). J'ai aussi
encadré plusieurs stages de recherche avec Nathalie Costet (IRSET) sur leffet de la pollu-
tion de lair sur le comportement de 'enfant, Patrick Pladys (CIC?', CHU de Rennes) sur

21. Centre d’investigation clinique de Rennes
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la modélisation prédictive du devenir d’enfants prématurés et Nolwenn Le Meur (EHESP)

sur la modélisation des parcours de soins et évolutions du systeme de santé.

Enfin, dans le cadre de la these de Abdoulaye Koroko, je me suis intéressée aux méthodes
d’optimisation basées sur le gradient naturel pour les réseaux de neurones profonds [VG11,
VG10].

Dans un souci de concision, je présenterai uniquement les travaux méthodologiques en
analyse de données de survie dans le chapitre dédié : les travaux sur le nombre acceptable
de sujets a risques pour garantir une interprétation fiable d’'une courbe de Kaplan-Meier
et la méthodologie utilisée pour 1’étude portant sur l'effet de la pollution de 'air. Ces
deux travaux me semblent illustrer mes apports méthodologiques ainsi que les domaines

d’application possibles.

1.5 Direction de mes recherches futures

Je viens d’obtenir un poste de CPJ a 'INRIA. Mon objectif pour les cinq prochaines
années est de créer une équipe en science des données appliquée a la santé publique,
en collaborant avec des chercheurs de 'IRSET et de TEHESP en santé publique, ainsi
qu’avec ceux de 'TRMAR et de I'TRISA. Je prévois de développer mon projet de recherche
en collaboration avec mes différents partenaires autour de deux axes principaux : 'inté-
gration de données multi-sources et I’analyse des données de spectrométrie, avec pour but
d’identifier 'impact des stress environnementaux durant ’enfance sur les événements de

santé. Mes différentes perspectives se focalisent autour de ces thématiques.
Pour des raisons de concision, toutes les démonstrations, la plupart des simulations et

certains détails mathématiques sont omis. Ils peuvent étre trouvés dans les références

correspondantes.
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CHAPITRE 2

INTRODUCTION (ENGLISH)

Multidisciplinarity is a driving force in my research. Since the beginning of my PhD, I
have interacted with specialists from various fields, notably public health (epidemiologists,
clinicians, biostatisticians), as well as from theoretical and/or applied statistical domains.
My research approach is primarily based on analyzing an applied problem, often related
to a specific health question, in order to develop new methodologies that provide precise
answers. This approach explains the diversity of my research activities, marked by regular
thematic changes, both in methodology and application. This is also reflected in the va-
rious concepts introduced across different chapters and the number of collaborators from
diverse thematic fields. This way of conducting research not only defines my past activity
but also guides my future approach, as it is the path I intend to continue following. Here
I want to deeply thank all my co-workers and to recall that this manuscript would not

exist without them.

Three main themes can be distinguished in my research work. The first relates to data
integration : statistical matching and record linkage. The second theme concerns survival
data analysis, including the analysis of matched data. The third part concerns various
contributions to modeling for the analysis of medical data such as causal, longitudinal,
or functional analysis. My works address different statistical themes and do not have a
specific link, although they share common characteristics such as the presence of latent
variables with the use of the EM algorithm for maximum likelihood parameter estimation.
A general title could be "data augmentation or completion" because it allows to group a
majority of my work but it leaves out a significant part of it. A detailed description of the

different topics is provided in this introduction.
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Introduction (english)

2.1 Data integration

My main research topic focuses on the development of methods for the multi-source
data integration using optimal transport theory, which can be divided into three parts :
statistical matching in particular the data recoding (section 2.1.1), heterogeneous domain

adaptation (section 2.1.2), and record linkage (section 2.1.3).

2.1.1 Data recoding

I initiated this work on statistical matching and variable recoding, during my se-
cond post-doctorate at INSERM UMR CERPOP within the "Biological Incorporation,
Social Inequalities, Life Course Epidemiology, Cancer and Chronic Diseases, Interven-
tions, Methodology' (EQUITY) team. The problem of variable recoding can occur when
a categorical variable is not coded on the same scale in two data sources, meaning that
it has different terminology and number of modalities. In the ELFE cohort, the coding
that corresponds to the mother’s health status was modified between two recruitment
waves. The uniqueness of the proposed methods to address this issue lies in using optimal

transport. These works were conducted in collaboration with Nicolas Savy (Paul Saba-
tier University, Toulouse), Chloé¢ Dimeglio, and Gregory Guernec (INSERM U1295) [VGT].

This research continued after I joined INSA as an assistant professor, in collaboration with
Jérémy Omer (INSA, Rennes), a researcher in optimization [VG2| (with an application to
NCDS data). I continue now this research with /oana Gavra, Nicolas Courty, Chloé Fri-
guet (University of Bretagne Sud, Vannes) and Pierre Navaro (CNRS, IRMAR, Rennes).
The variable recoding issue is also present in the databases held by IRSET, health insti-
tute at Rennes : the EDEN and PELAGIE cohorts serve as application datasets for my
current research, in collaboration with Nathalie Costet (IRSET).

We have also developed an R package (0Trecod) that has been submitted to the CRAN
[VGY] facilitating the accessibility of these works.

2.1.2 Heterogeneous domain adaptation

In parallel, since 2020, I have also established a collaboration with the Obélix team

(IRISA, Vannes) with Nicolas Courty and Chloé Friguet on a related issue : heterogeneous
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domain adaptation. In this context, we supervised Marion Jeammart’s internship. The
objective of this work is to transfer knowledge from a source domain to a target domain,
where the two domains have different data distributions in order to predict/explain the
same outcome. Moreover, the source and target domains not only have different data
distributions but also involve distinct explanatory variable spaces. This work has been
presented at various conferences (53" Journées de la Société Francaise de Statistique
(2022), Journées MAS (2022)) and a publication is being written.

2.1.3 Record linkage

This related issue emerged from discussions within a working group we established
in 2018, involving EHESP, Agrocampus, and ENSAI. These discussions led to Huan
Tanh Vo's PhD across different institutes : EHESP, IRMAR and IRT b-com. It was co-
supervised by Guillaume Chauvet (ENSAIL, Rennes), Andre Happe (University of Rennes

1) and Stephane Paquelet. This theme encompasses two issues :

1. the record linkage of clinical database GETBO with data from the French national
health data system (SNDS) in order to enrich the information in the clinical database
[VG14]

2. Incorporating matching error in survival data analysis (which I will present in the
section 2.1.3 in "Survival Data Analysis") [VG13].

2.2 Survival analysis

My doctoral and postdoctoral works were motivated by an issue encountered in a cli-
nical trial and focused on survival analysis (sections 2.2.1 et 2.2.3). The last part concerns

the survival data analysis of matched data (introduced in section 2.1.3).

2.2.1 Survival analysis of preventive clinical trials

During my PhD conducted at INSERM UMR CERPOP in Toulouse within the "Aging
and Alzheimer’s Disease" team, under the supervision of Nicolas Savy et Sandrine An-
drieu, I worked on statistical tests to detect late treatment effects in the context of clinical
trials for Alzheimer’s disease prevention [VG6, VG3, VGA4].

19



Introduction (english)

2.2.2 Competitive risks in survival analysis

Then, I did a post-doctorate at the NHMRC Clinical Trials Centre at the univer-
sity of Sydney in Australia, where my work mainly concerned competitive risk analysis
applied to cancer survival. These works were carried out in collaboration with Malcolm
Hudson (Macquarie University, Sydney), Val Gebski (NHMRC, University of Sydney) and
Maurizio Manuguerra (Macquarie University, Sydney) [VG5].

2.2.3 Survival analysis of matched data

As mentioned in section 2.1.3, the second part of Huan Vo Tanh’s PhD work concerns
the statistical analysis of matched data when the variable of interest is a lifetime. With
Jean-Francois Dupuy (INSA, Rennes) and Samuel Bowong (University of Douala, Ca-
meroun), we are continuing this work with the supervision of Vanessa Chezeu’s PhD, in

cotutelle with Cameroon, whom we met during a CIMPA school in Senegal.

2.3 Some contributions to the analysis of medical

data

In parallel with these two main topics, I could work on different subjects in particular
causal analysis (section 2.3.1), longitudinal data analysis (section 2.3.2), and functional

data analysis (section 2.3.3).

2.3.1 Causal analysis : variance estimator for the generalized

propensity score

I worked with David Hajage (APHP, Paris) and Guillaume Chauvet on variance esti-

mation for generalized propensity score [VG1].

2.3.2 Longitudinal data analysis with outliers : robust estima-

tion of mixed models

T also developed a collaboration with Anne Ruiz-Gazen (Toulouse School of Economics)
and Rik Lopuhad (Delft University of Technology) on robust estimation for mixed models

used in longitudinal data analysis with outliers [VG12].
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2.3.3 Functional data analysis

I am currently collaborating with Valérie Monbet (IRMAR, University of Rennes 1)
and Madison Giacofei (IRMAR, University of Rennes 2) on a new theme : the modeling of
functional data. In particular, we have developed a mixture model for canonical correlation

analysis for functional data.

2.4 Some methodological guidelines for epidemiology

Throughout the PhD and the two post-doctoral positions, my research has been divi-
ded between two frameworks : statistics and epidemiology. In epidemiology, I collaborated
on certain articles providing my expertise in methodology [VGa3, VGal, VGab]. I realized
statistical analysis of different articles [VGa8, VGa2]. In the field of social epidemiology,
with Cyrille Delpierre and Michelle Kelly-Irving (and co-authors from INSERM UMR
CERPOP EQUITY team), I published a first-author article on the association between
early social environment and Epstein-Barr virus infection in the Millennium Cohort Study
cohort [VGad|. Another work with Fmma Gibbs, Val Gebski, and Karen Byth (NHMRC,
University of Sydney) proposed a methodology on the estimation of the acceptable num-
ber at-risk subjects to interpret a Kaplan-Meier curve. This question arose from my thesis
work, specifically in the context of the Guidage study on which we worked. At the end of
the study, late treatment effects were visible on the graph comparing the Kaplan-Meier
curves of the treatment and placebo groups, with few subjects at risk remaining in the
analysis. This article was chosen to be published in an epidemiology journal to provide a

readily usable tool for epidemiologists [VGS|.

With Jean-Francois Dupuy, we have also provided methodological advice for a study on
the effect of air pollution on cancer risk [VGa6, VGa7] (with researchers from IRSET,
Emeline Lequy, and Benedicte Jacquemin). I have also supervised several research intern-
ships with Nathalie Costet (IRSET) on the effect of air pollution on children’s behavior,
Patrick Pladys (CIC, CHU of Rennes) on predictive modeling of premature infant future,
and Nolwenn Le Meur (EHESP) on the modeling of care pathways and developments in
the healthcare system.

With the supervision of Abdoulaye Koroko’s PhD, I have learnt on optimization methods
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based on natural gradient for deep neural networks [VG11, VG10].

In the sake of conciseness, I will present only the works on survival data analysis in the
dedicated chapter : the research on the acceptable number at-risk subjects to interpret a
Kaplan-Meier curve, and the methodology used for the study on the effect of air pollution.
Indeed, these two works seem to illustrate my methodological contributions as well as the

possible areas of application.

2.5 Direction of my future research

I have just obtained a CPJ position at INRIA. My objective for the next five years is
to create a team in data science applied to public health, collaborating with researchers
from IRSET and EHESP in public health, as well as from IRMAR and IRISA in data
sciences. I plan to develop my research project in collaboration with my various partners
along two main axes : multi-source data integration and the analysis of spectrometry data,
to measure the impact of environmental stressors during childhood on health outcomes.

My various perspectives are focused on these themes.

In a sake of compactness all the different proofs, most of the simulations and some ma-

thematical details are omitted. They could be found in the corresponding references.
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CHAPITRE 3

DATA INTEGRATION

3.1 General introduction on data integration

My main research topic focuses on the development of methods for the multi-source
data integration, which can be divided into three parts : statistical matching in particular

the data recoding and domain adaptation (section 3.2), and record linkage (section 3.3).

In these works, we focus on two objectives resulting from the integration of databases :

e The first objective is to obtain a dataset enriched in terms of individuals, thus
having more realizations of the random variables. However, harmonizing the va-
riables in both databases may be necessary. In our work on variable recoding, we
address the case where a categorical variable recording the same information is
coded differently in the two databases. This means the categorical variable has
different terminologies and a different number of categories. In our work on hetero-
geneous domain adaptation, the explanatory variables may be in different spaces in
the two databases. This objective is illustrated in Figure 3.1. Statistical matching
or domain adaptation corresponds to the set of methods aimed at achieving this

objective.

e A second objective is the record linkage which aims to enrich the information at
the individual level in a database, meaning adding variables to the database that
were originally recorded in another database. It is common to enrich a database
by using data from the SNDS, which covers the entire French population. This
objective is illustrated in Figure 3.2.
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3.2 Variable recoding problem and heterogeneous do-

main adaptation using optimal transport theory

Motivations :

e Statistical matching : set of methods aimed at integrating two (or more) data
sources with different samples referring to the same population.

Variable recoding problem : when a categorical variable is not coded on the same
scale in the two data sources.

e Domain adaptation : set of techniques proposed to transfer knowledge from a
source domain to a target domain, where the two domains have different data
distributions to explain/predict the same outcome.

Heterogeneous Domain Adaptation : particular case of domain adaptation
that deals with situations where the source and target domains not only have
different data distributions but also involve different spaces of explanatory variables
(features).

Contributions of the Chapter :

e Use of optimal transport theory for data recoding problem and Heterogeneous
Domain Adaptation.

Collaborations :

e Data recoding problem

v Nicolas Savy (IMT, Paul Sabatier University, Toulouse), Chloé¢ Dimeglio, and
Gregory Guernec (INSERM UMR 1295 CERPOP, Toulouse) [VGT7], section
3.2.2.

v Jérémy Omer (INSA Rennes) [VG2], section 3.2.2.

v Nicolas Courty, Chloé¢ Friguet (IRISA, University of Bretagne Sud, Vannes),
[oana Gavra (IRMAR, University of Rennes 2), and Pierre Navaro (CNRS,
IRMAR, Rennes), section 3.2.2.

e Heterogeneous domain adaptation
v' Nicolas Courty, Chloé Friguet, loana Gavra, section 3.2.3.

Package R : 0Trecod [VGY] for data recoding
Perspectives :

e Heterogeneous Domain Adaptation with mixed type explanatory variables.

e Variable recoding with different databases containing information collected at dif-
ferent times for the same individuals.

e Statistical modeling on imputed dat20after data integration.
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3.2.1 Introduction

Problems and objectives

Variable recoding.

Problem. The problem of variable recoding arises when a variable is not coded on the
same scale in the two data sources, that is to say when it has different terminologies and
number of modalities. As illustrated in Figure 3.3, the problem can be formalized in terms
of two data sources, A containing n4 units and B containing ng units. It is assumed that
A and B contain disjoint units. A and B share a subset of variables X (referred to as
explanatory variables), and at the same time, each data source A and B distinctly ob-

serve other subsets of variables : Y in A and Z in B (outcomes), which are explained by X .
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(a) Database A and B (b) Synthetic Dataset

FiGURE 3.3 — Statistical matching between databases A and B, including common va-
riables (explanatory variables X ) and distinct variables (outcomes Y and Z respectively).

An application (from the EQUITY team at INSERM UMR CERPOP) is the French
cohort study ELFE. The objective of this study is to explain how various contextual fac-

tors (such as perinatal conditions and environment) impact the development of children’s
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health and well-being over time and into adulthood. The variable of interest is the res-
ponse to the question asked to the mother : "How would you rate your general health ?".
During the first wave of data collection (january to april 2011), an ordinal scale was used
with five possible responses : "excellent", "very well", "well,", "fair" and "bad". In the second
wave of data collection (may to december 2011), another ordinal scale with five possible

responses was used : "very well," "well", "medium", bad" and "very bad".

Objective. The data recoding problem consists in the prediction of Z;, i = 1,...,n4 (or
the prediction of Y;, j = 1,...,np) from the observations (x;,v;), @ = 1,...,n4 and
(wj,zj), j = 1, ...,np.

Heterogeneous Domain Adaptation.

Problem. Transfer learning involves training a model on a dataset explaining a continuous
or categorical outcome, called the source domain, to predict the unobserved outcome in a
new dataset, called the target domain. However, there may exist differences in the condi-
tional and/or marginal distributions of variables between the source and target domains,
and the learned models cannot be directly applied to predict outcomes in the target do-
main. Domain adaptation (DA) refers to a set of techniques proposed to overcome this
issue [94]. In general, most existing domain adaptation methods assume that data from
the source and target domains are represented in the same feature space, with identical
dimensions. However, in some applications, this is not the case, feature spaces can be
heterogeneous. This is referred to as heterogeneous domain adaptation (HDA). In the
context of omics data, the explanatory variables may be the pollutants measured in the
child’s umbilical cord in one database S, and the same pollutants recorded in the mother’s
blood analysis in another database T'. As illustrated in Figure 3.4, the problem can be
formalized in terms of two databases : the source data S and the target data T, with
respectively ng and np observations. X° and X7 may have different distributions and

may be in a different feature space.

Objectives. The objective is to propose prediction models adapted to HDA. Let’s denote
the set of the sample indices where the outcome Y is observed in the source and target
samples respectively by 7% and Z7. We have concentrated on three types of HDA scenarios
(see table 3.1) :

31



Data integration

S| XSeR¥ | YSeR T | XTeR? | YTeR
1 1
=
)
e} e} o] >
() () D —
> > > &
g g 3 8
»n 0 0] o
e o] o] =
O o o 5
ng nr Z,

FIGURE 3.4 — Heterogeneous domain adaptation between S (source) and T' (target) da-
tabases

1. Unsupervised HDA, where all outcomes from the source domain are observed, but
none in the target domain. The objective is to train a predictive function f7 using
the observations in data source S, (x7,4), i € Z° = {1,...,ng} to predict YT =
fT(XT) in the target domain T

2. Semi-supervised HDA, where all outcomes from the source domain and some out-

comes from the target domain are observed. The objective is to train a predictive

function f7 using the observations in data source S, (?,y?), i € Z% = {1,...,ng}
and data target T, (z],y]), j € Z" to predict YT = f7(X™) in the target domain
T.

3. Partial HDA, where outcomes from both the source and target domains are partially
observed. The objective is to train two predictive functions f7 and f° using the
observations in data source S, (€7, y7), i € Z° and data target T, (z],y] ), j € Z"
to predict YT = fT(X7) in the target domain 7' and to predict Y = f5(X¥%) in

the source domain S.

Y® YT
Unsupervised HDA observed non observed
Semi-supervised HDA observed partially observed
Partial HDA partially observed | partially observed

TABLE 3.1 — Multiple learning cases based on the availability of outcomes Y in S and/or
T databases. Note : In the context of partial HDA, since outcomes from both domains are
partially observed, the source and target domains can be interchangeable.
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Literature

Statistical matching. Classically, methods for classification learning [110] first estimate
the distribution of Y given explanatory variables using the observations in dataset A
(i, y:), i =1,...,n4 in order to predict the missing variable Y;, j = 1,...,np in dataset
B. Then, variable recoding can be seen as a missing data problem. In this context, the
missing value depends only on the database to which the subject belongs and not on the
variable itself. The missingness mechanism can then be considered as missing at random.
This problem has been widely studied in the literature [78] and many existing methods
for treating missing data could be used. Moreover, Y and Z refer to the same information,
which can be interpreted as a latent variable. Methods of prediction of this latent class
could also be applied (e.g. class latent analysis or trait latent analysis [6, 101]). The major
drawback of such approaches is that the resulting methods use the information contained
in each database in two independent steps that cannot capture the interrelations between
them. The outcome Z, observed in B but not in A, is considered as additional information
that can be incorporated into the model to improve the estimation of Y in B. Further-
more, differences between the joint distributions of (X,Y,7) in databases A and B may

exist.

Domain adaptation. Different reasons characterize the inequality between the joint dis-
tributions in source and target domains depending on the assumptions made about the
conditional and marginal distributions. Under the covariate shift assumption, the diffe-
rences between the database distributions are characterized by a change in the covariate

distributions %, while the conditional distributions X

remain unchanged across do-
mains [27]. Under the target shift assumption, the differences between the databases are
characterized by a change in the target distribution ;¥ while the conditional distribution

Xy
]

to solve DA issues [26], under target shift [94] or covariate shift assumptions [28].

is conserved across domains [94]. Optimal transport (OT) [112] has been proposed

Heterogeneous domain adaptation. Main methods in HDA can be classified regarding
two strategies : (1) project both feature spaces into a common subspace by jointly learning
the common subspace and a classifier, then iteratively align the discriminative dimensions
([120] or [16]), and (2) jointly perform implicit data reconstruction, by a source feature
space transformation to align it with the target feature space, and learn a classifier [77].

See [34] for a survey of several methods of Heterogenous Transfer Learning. OT has been
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also proposed to solve HDA issue. The problem can then be addressed by an algorithm,
named COOT, which stands for CO-Optimal Transport [106]. The feature vectors in the
source and target domains can have different dimensions, but all components of the vector
must be defined in the same probability space. However, this algorithm does not allow for

the prediction of a target variable.

Optimal transport background

The OT problem was originally stated by [85] and consists in finding the cheapest way
to transport a pile of sand to fill a hole. Formally the problem writes as follows : consider
two (Radon) spaces X and ), u* a probability measure on X, and p* a probability
measure on ) and ¢ a Borel-measurable function from X x Y to [0, oo]. The Kantorovich’s
formulation of the optimal transport problem [69] consists in finding a measure v €

[(p™, 1) that realizes the infimum :
inf{/ c(z,y) dy(z,y)| v € F(ux,uy)}, (3.1)
XxY

where T'(u™, 1Y) is the set of measures on X x ) with marginals u* on X and p¥ on ).

Consider two sets of weighted samples :

{(mi,wi),izl...n,Zwizl} and {(yj,vj)7j:1...m,Zvj:1}
j=1

i=1

The Kantorovich formulation given in equation (3.1) applied to these empirical measures

consists in finding a coupling matrix 7 € R*™ that satisfies :

7= arg minZCi,jﬂ'i’j, (32)

mell(w,v) 4;

with C a cost-matrix that defines the transport cost between two samples x; and y;, and

II(w, v) is the set of matrices w € R*™ which verifies :

n J— y
T =, Vi=1...m,

Z;'n:lﬂi,j = W;, Vi = 1n,
to ensure that all samples are transported. We define 7* := OT(w, v, C).

34



Data integration

OT is an optimization problem that allows to define a distance between two probability
measures, called the Wasserstein distance, which is actually used as a loss in many opti-

mization problems (see [91] for details).

I will introduce the different algorithms that we proposed for data recoding and HDA in

the next sections.

3.2.2 Variable recoding problem

Formal statement of the data recoding problem

Let A and B be two independent databases corresponding to two sets of subjects. For
more concise notations, we assume without loss of generality that the two databases have
equal sizes, so that they can be written as A = {iy,...,i,} and B = {j1,...,7n}. Let
(X4, Y, Zi));c4 and ((X;, Y], Z;5)) ;o p be two sequences of i.1.d. discrete random variables
with values in X x Y x Z, where X is a finite subset of R?, and )Y and Z are finite subsets
of R. Variables (X;,Y;, Z;),i € A, are i.i.d copies of (X4, Y4, Z4) and (X,,Y}, Z;),j € B,
are i.i.d copies of (X?,Y?, ZB). By independence of the databases, we moreover assume
that (X4, Y4, Z4) are independent of (X, Y B Z8). Every random variable is defined on
the same probability space (€2, F,P). Finally, we assume that for all & € X the probability
distributions of Y4 and Z4 given that X“ = a are respectively equal to those of Y'Z and

Z8 given that X? =z, i.e.,

Assumption 3.1.

P(Y4 =y| X4
P(ZA =2 | X4

z)=PYP=y|XP=x) VecX Vyc), and
x)=P(Z°% =2 | XBP=2x),Vx c X,Vz € Z.

In particular, assumption 3.1 implicitly states that P(Y4 =y | X4 = x) is defined if and
only if P(YZ =y | XB = ) is defined, i.e., P(X* = z) = 0 if and only if P(X? = z) = 0.
Without loss of generality, we thus restrict the domain of the explanatory variables A" to

the values, @, such that P(X4 = z) # 0 and P(X? = x) # 0.

The data recoding problem consists in the prediction of (Z;);c4 from independent realiza-

tions of random variables X and Y in A, ((;,v;))ica and of X and Z in B,, ((x;, 2;))eB-
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To be more specific, the problem is to propose an estimator of the distribution of Z4

conditional to X4 = x and Y4 =y, i.e.,
(P24 =2 X =2y ' =y)z€ 2} zeXye )

from the observations of X and Y in A, ((x;, y;))ica, and of X and Z in B, ((x;, 2;))jeB-

Observe that since Y and Z are never jointly observed for the same subject, the assumption

on conditional distributions 3.1 cannot be tested from the data.

Distributions and estimators

The discrete probability distribution of a discrete random vector V' with values in V

is given by
MV = Z MX(SM

veY

where 6, is the Dirac delta measure centered at v. If V is finite with cardinality |V, u"

will also refer to the vector of weights (1) )yey.

Vectors ((z;, ;) )ica and ((x}, 2;)) jep are realizations of two n samples of random variables
(X, Y:))ica and ((X;,Y;))jep with unknown joint distribution u(XA’YA) and u(XB’ZB).

As a consequence, we will consider their unbiased empirical estimators given by

~ AvyvA 1
ooy = " > Uiximayimyy, VT € X,y €, (3.3)
i€A
1
ﬂ%)yif’;ZB) = - Z ]l{ija:,Zj:z}; VZB S X, A Z (34)
JEB

The strong law of large numbers applied to the sequences of i.i.d. random variables
((X;,Y)))ica and ((X, Z;)) ep directly yields that

pEAYY) _as ,LL(XA’YA),VCU eX,Vye)y

:un,w,y n—s+o00 T,y
~(XEB,ZzB) _as. (XB,ZB)
Hn 2,2 n—>+oo> Ky - ,v«’B € X,VZ c Z.

In what follows, we will also need an estimator of u&**Z") Let & € X (P(XB = &) #0)
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and z € Z, then

P(XA=x,2"=2) = P(Z=2| X" =2)P(X* =)
= P(ZP =2 | XP =2)P(X* =2x)
A _

where the second equality is a direct application of the assumption (3.1). Denoting as
ﬁnXA and X " the unbiased empirical estimators of [LXA and pX B, we then consider the
estimator of ,u(XA’ZA) given by, Ve € X, Vz € Z,

~xB zB)y~xA

un T,z Mn @x /\XB
~ e, 0,
e < e 7 (35)
0, it ﬁnXm 0.

The almost sure convergence of all the estimators in the expression of (X w ZZ ) yields

pxnzh ooy (X2 yp e X, V2 e 2.

n—-+o0o z,2

Remark 3.1 (Estimators for comparable populations). Observe that if we add the as-

sumption that X4 and XP are copies of the same random variable X, we immediately

see that in such case, we can use the unbiased estimator p(X"7?") = pX*.2%),

Optimal transport of outcomes within data sources

Model. The first OT approach for data recoding is described in [VGT7|. This version

makes the additional assumption that :
Assumption 3.2. Y4 and Z4 respectively follow the same distribution as Y? and Z5.

In this setting, we aim at solving the OT problem (3.1) that pushes ,uYA forward to p? !
As a consequence, variable «y of (3.1) is a discrete measure with marginals [LYA and uZA,
represented by a || x| Z| matrix. The cost, denoted as cis a | V| x | 2| matrix, (¢, .)yey cz-

To be specific, the goal is the identification of

. A A
= argmin, pivixizi {(’y|c) cYliz = e ,’YTlD’\ = u? }’ (3.6)
where (-]} is the dot product, 1 is a vector of ones with appropriate dimension and M7 is
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the transpose of matrix M. The cost function ¢, ., measures the average distance between
the explanatory variables of subjects of A satisfying Y = y and subjects of B satisfying
Z = z, that is

ey =E[d(X4 XP) | Y =y, 2% = 2], (3.7)

where d can be any distance function defined on X x X. This choice allows for a clear

connection between the structures observed in databases A and B.

Remark 3.2. Here a Hamming distance from the associated complete disjunctive tables
is used but other distances are adapted to ordinal categorical variables : Spearman, Che-

byshev, Kendall, or Cayley distances.

The above model cannot be solved in reality, since the distributions of X4, XB Y4,
and Z4 are not known. As a consequence, the following unbiased empirical estimators are
used : i *of ux * and X 7 of X " Observations of Y and Z are only available in A and

B (respectively), so two empirical estimators are defined :

A 1
/sz,y = = Iy, Yyedy
nica

1
ﬂZA = E Z ]l{Zj:Z}, Vze Z.

jeB

The assumption 3.2 gives that : 4Z" = Z”. Finally, denoting as

/{n,y,z = Z Z ]]'{Y’i:vaj:Z}
i€AjEB
the number of pairs (i,j) € A x B such that ¥; = y and Z; = z, the cost matrix c is
estimated by

Kn,y,z

0, Vye NV, 2 € 2 Kpy,.=0.
(3.9)

Plugging the values observed for these estimators in (3.6) yield a linear programming

Cry,s = { S ieaXien Livieyz—2) X (X3, X;), VeV, 2€ Z : kyy,. #0,
n,y,Z -

model denoted as Py, A solution Fy,, can then be interpreted as an estimator i’ %" of
the joint distribution of Y4 and Z4, u(YAZ ) If this estimate is necessary, it is nevertheless
insufficient here to provide the individual predictions on Z in A. These predictions are
done in a second step using a nearest neighbor algorithm from which an estimation of
pZ X A=2 Y =y ig deduced (see [VGT7] for details).
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Limits of this algorithm. This first method has two main drawbacks. First, it relies
on the strong assumption that Y4 and Z4 follow the same distribution as Y? and Z%
respectively. There are several contexts where it will not be true that Y has the same
distributions in the two databases. For instance, this has already been observed when
comparing North American NHANES study and the French National Health Survey. The
"self-rated overall health" outcome is not distributed identically in the two databases,
where the rates of functional limitations and education level are different [35]. A second
limitation is that this OT model does not actually solve the recoding problem. It requires
an independent post-treatment step where the predictions are computed with a nearest
neighbor algorithm. In particular, this means that the choice made in the second step
are not explicitly taken into account in the OT model. Moreover, the nearest neighbor
algorithm has a greedy behavior where the quality of the predictions may depend on

arbitrary choices in its execution.

Optimal transport of outcomes and explanatory variables within

data sources

Motivation. Our aim was to build upon this previous work to develop a recoding me-
thod that requires less restrictive assumptions and directly targets the solution of the
recoding problem. In particular, we consider that Y and Z may be distributed differently
in A and B, but we still focus on databases where explanatory variables explain the out-
comes Y and Z similarly in the two databases. This restriction remains necessary, because
the only information we have to characterize the subjects is the set of common explanatory
variables. In particular, if outcomes are independent from explanatory variables, recoding

is doomed to failure unless additional information is provided.

In this work [VG2], we propose to search for an optimal transport between the two joint
distributions of (X4,Y4) and (X4, Z4) with marginals &Y™ and pX*Z% respecti-

vely. Under Kantorovich’s formulation in a discrete setting, we will then search for
" € argmin,p < €,y >,

where ¢ is a given cost matrix and D is the set of joint distributions with marginals
pENYN and X2 Tt is natural to see any element v € D as the vector of joint
probabilities P(X4 = =, Y4 = y), (X4 = o/, Z4 = 2)) forall z, ¢’ € X,y € Y
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and z € Z. Since this probability nullifies for all  # ', we will define v € D as
a vector of RIFXIVIXIZI where Yay.- stands for an estimation of the joint probability
P(X4 =z, Y4 =y, Z4 = 2). These notations lead to the more detailed OT model

v* =min < ¢,y >

S t Z /ymzya I[’Lw,y A)7 vw e X,Vy E y’

2€Z
P (3.10)
1 2711772/7 luwz A)anl?GX,VZGZ,

yey

Ya,y,z Z 07 Va S X,Vy c y,Vz € Z.

AvyvA A 7A
Y and X% are known.

x4 Y)and X Z4)

The above model can be solved only if the marginals p(X
However, this is not the case, but we can build unbiased estimators fi
as in (3.3) and (3.5). The cost matrix (3.7) is used and estimated by (3.9). Formally we
can write :

Cayz =Cyz, VL € X Vy e Y V2 e Z. (3.11)

Proposition 3.1. forallyc Y, 2 € Z, ¢y % Cy,z, OT, stated otherwise :
n oo

len —elle =72 0.

The resulting model is

Up, = min < ¢,,vy >

St > Yay.s /jﬁle yY Ve e X,Vy e,
N z€Z

,le :
Y Vaye ﬁff; N VYo e X Wz e Z,

yey

Ya,y,z Z O, Vx € X,Vy € y,‘v’z c Z.

(3.12)

An optimal solution, 4 ,, of 731,n can be interpreted as an estimation of the distribution
of (X4, Y4, Z4). We thus deduce an estimation of the distribution of Z4 given the values
of X4 and Y4 as

71,n,w,y,z’ vw € X,y e y,Z c Z - (XA YA) 7& O,

2=y _ |G e .13
0, Va:eX,yEy,ZEZ:ﬁg&YA):O.
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Remark 3.3. If a practitioner requires a single estimated value for Z4, we can still use
the usual prediction provided by the maximum a posteriori decision rule :

z! = argmax__ {ﬁg:'XA:%YA:yi} , Vie A
Due to the possible errors in the estimations of the terms of 7317,1, the equality constraints
are relaxed by adding slack variables in the constraints, such that they sum to zero and
the £;-norm of the vector of slack variables is bounded. A regularization term is also ad-

ded, considering <71”X% . Some regularity in the variations of the conditional

Moz )xeX,yE)/,zez

distribution p*ZMIX*=2 with respect to a is then expected (see [VG2] for details).

The two following works are still in progress (sections 3.2.2 and 3.2.3). I chose
to introduce them because they are fully integrated into my reflections on data recoding

and domain adaptation using optimal transport.

Optimal transport between the joint distribution of explanatory

variables and estimated outcomes between data sources

Motivation. Optimal transport is used differently in our work on variable recoding
and in the context of transfer learning and domain adaptation (section 3.2.3). Optimal
transport minimizes the expected transportation cost with respect to the joint distribution
of the variables in datasets A and B. In our variable recoding work, the cost function and
marginal distributions are directly estimated from observations. The model corresponds to
a transport across the variable categories. In domain adaptation work [27], the expectation
is replaced by its empirical version, and the model corresponds to a transport across the
samples (see equation (3.2)). We proposed a new formulation of the solution presented in

[VG2] for statistical matching as an extension of the model developed in [27].

Model. Indeed, we extend the model developed by [27] (which will be presented in the
context of domain adaptation with two variables X and Y in section 3.2.3) and propose

to search for an optimal transport between the two joint distributions of (X4,Y4, Z4)
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and (XB, VB ZB) leading to the following OT model :

v € argmin > C((m, y,2), (&Y, Z’)) Vwy.2) (@' y/7):
VEF(M(XA!YAva>,u(XB’YszB)) ((2,y,2)EX XY X Z)2

(3.14)
where c¢((z,y, 2), (2., 7)) = d(z, ') + a1 Ly(y,y') + aaLz(z,2') is a cost measure com-
bining both the distances between the modalities and loss functions £y and £z measuring
the discrepancy between y and 3’ and z and 2’ respectively. Since z and 3’ are not ob-
served, we replace them by f(x,y) and g(a’, 2’) respectively where f: X x Y — Z and
g: X x Z — Y are prevision rules. We thus consider the following joint distributions p/4
and p?8 of (X4, Y4, f(XA,Y4) and (XB,g(XE, ZB), ZP) respectively. a; and ay are
important parameters that need to be calibrated balancing the alignment of explanatory
variables and outcomes. A regularization term, such as entropic, can be added, such as in
[26].

The empirical version of (3.14) is given by

min Z c((mi, Yi, [ (i, yi), (x5, 9(x5, 25), Zj))%’,j

Fay i€A,jEB

1
R S.t. Z")/l’] = —, VJ € B,
732’” : icA n (315>
1
Zryz,] = VZ € A?
jeB n

v, >0, Vie A Vj e B.

The problem can be written as

min W, <,F/"f , ﬁB’g),

)

where W is the 1-Wasserstein "distance" for the cost ¢ and

1 1

/\A’ o AB7 o

M f - Z 5(m17y11f(mhyl)) and ’U/ f=— Z 5(mj7g(m]"zj)’zj)'
N iea N jeB

We will assume that f and g belong to the function space H which is a Reproducing
Kernel Hilbert Space or a function space parameterized by some parameters w € RP. For

example, linear models, neural networks and kernel methods belong to such a space.
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Problem 732,71 is smooth and the constraints are separable according to =, f and g. Hence,
a natural way to solve the problem in equation (3.15) is to alternate optimization on
parameters v, f and g. This algorithm known as Block Coordinate Descent (BCD) or
Gauss-Seidel is described in algorithm 1. Solving 732,,1 when f and g are fixed is a classic
linear programming problem. The optimization problem with fixed v and f leads to a

new learning problem given by :

min >, Ly (g(a:j, Zj)a%’)%’,j- (3.16)

9ER A jeB

The optimization problem is similar with fixed v and g.

Equation (3.16) represents a multiclass classification problem. A classical approach to
solve it is a one-against-all strategy. Following the example of [27], we choose this ap-
proach in our simulation study. For estimating a multiclass classifier with a one-against-all
strategy, we start with a loss function £ : {0,1} x {0,1} — R associated to a binary clas-
sification problem and define a general loss Ly, as Ly <y1, yg) = 2yey LM gy=1, Liyomin)-
For any decision function g € H and all y € ), we denote as g, : X x Z — {0,1} the
decision function related to the y-vs-all problem, g,(x, z) = 1 if g(z, z) = y and 0 other-
wise. Let P4 be a n x |Y| matrix such that P/, = 1 if the unit i is of class y € Y and
Pif‘y = 0 otherwise. Furthermore, let PB be the transported class proportion matrix given

by PB = nyT PA. Then the minimization problem given by (3.16) can be rewritten as :

min Z Z ﬁy 1 » 9y w],zj)) + (1 - p]%)ﬁy(oagy<wjvzj>>' (3'17)

geH jEByeY

Remark 3.4. We can remark that solving 7327,1 s equivalent to solve

min Y > > M e < y)%(wlag(fl?'az)%))pm,y,m’,z

PP pox yey wiex sez

s.1. Zzpmﬂy,mz Mnmy )avanyey,

’]/D\én x'eX zeZ (318)
’ _(XB,zB /
SN Payars un v, V' EX z€Z,
reX yeY

Paya >0, Vee X yeV ' e X,z Z.
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Algorithm 1: Algorithm for solving 732,,1

-

Initialisation : let two classifiers f* and g*;
while do not converge do
3 Solve v* €

N

argmin dicAjeB C((wi, Yi, [ (x5, 1)), (25, 9% (25, 25), Z])) Vi s
’YGF(% Dica Birgy jen %
4 ~v* = OT(w, w, C) with w = 1,, the vector of n-ones and C;; =

C((ﬂ% Yi, [0, vi)), (x5, 9" (25, 25), 25);

5 Solve f* € argmin ey >icajen L(f(zci, zi),yj) Vi

6 Solve g* € argmin ey, >ica jen L'(zl-,g(a:j,yj)> Vi
Return z; = f*(x;,y;),Vi € A and y; = g*(x;,y;),Vj € B;

3

Theoretical properties

Consistency of the optimal transport estimator for model defined in section
3.2.2. In [VG2], we study the asymptotic behavior of a optimal solutions of 7517,1 with
respect to those of Py (see equation (3.10)), the models defined in section 3.2.2. To do

this we rewrite P; and 731,n as generic linear programs in standard form
Py v* =min{(c]y) : Ay =b,y >0} and Py, : 0, = min{(Enh/) : Ay = b,y > O},

where ¢, c, € R?, b, b, € R™, A € R™? and 0 = 0, the vector of p-zeros. For v € R?
and S C RP, we also define the point-to-set distance as

d(y,5) = inf llv =1,

where ||-]| is some norm on RP. We then introduce the deviation measure of set S C R?
from set S" C R? as
D(S,5") = sup inf |y — ]|
ves Y'ES
Theorem 3.1. Let S* be the set of optimal solutions of P1 and S, the set of optimal

solutions of 7517,1. Then

Uy —=2 50", and D(S,,S%) -2 0.

n—-+oo n—-+o0o
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The convergence of ]D)(gn, S*) justifies that we estimate a solution of P; with one of 731771.
However, it cannot justify the overall approach that consists in searching for a solution of
P, to derive the conditional distributions pZ'1X*=2Y*=Y & ¢ X y € Y. The quality of
our estimation of these distributions will depend on how the cost function reflects some
unobserved properties of the distributions. In the choice of our cost function, we follow
the intuition that subjects with outcomes Y; = y and Z; = 2 should be frequent when y
and z are close to each other in the space of the explanatory variables. If for instance,

XAY4 z4)

there is some prior distribution s , the result would certainly be improved by

minimizing H’y — M(XA’YA’ZA)Hl instead.

Bound on the prediction error for models defined in sections 3.2.2 and 3.2.2.
Let (X,dx), (V,Ly) and (Z, Lz) metric spaces. Let f: X x ) — Z be a prevision rule.

We define the risk or error of generalization of f by
Rj(f) = E(XVY’Z)NH(XJ‘»YﬂZj) [EZ(Z7 f(X, Y))]

where j = A, B. Let define, Ve € X,y € ),

fl*(x>y) € argminz’EZE[‘Cz(ZA’ z/>|XA = maYA = y]

= argmin, ;Y Lz(z,2/)(pr)Z X =e =y (3.19)
ZEZ

and J?ln(x,y) € argmin, Zﬁz(z,zlmf,jXA:m’YA:y (3.20)
z2€EZ

with AT%:'XA:;”’YA:@’ defined in equation (3.13) from the model Py ,,, and () 21X A=Y A=y
defined in similar way, by replacing 9, with v*, a solution of P; and iX*Y™) with pX*Y™)

(section 3.2.2). We denote by fgn a solution of @27n, the model defined in section 3.2.2.

For both prediction functions fln and fgm, we proposed bounds on the error of generali-

zation in our current work.

Conclusion

Proposed methods and simulation results. We have proposed several methods for predic-

ting missing variables Y and Z using the theory of optimal transport.
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e In our first work, the distribution of Y is transported to the distribution of Z within
a data source, and a cost function is proposed as an average distance between the
covariate vector X of each data source [VGT7|. This approach has shown better
performances when compared to missing data imputation methods such as multiple
imputation [109], non-parametric hot-deck approaches [42], or a statistical learning
method. In this work, we assume that the distributions of Y, Z, Y| X, and Z|X
remain unchanged from one data source to another.

e This algorithm is extended in [VG2], considering the transport of the joint distri-
bution between (X,Y’) and (X, Z) within a data source. The constraints on the
marginals of OT problem are also relaxed, because they may be too restrictive in
the presence of errors in the estimations. A regularization term is added to the ob-
jective function to smooth the variations of outcomes with respect to explanatory
variables. Only the distributions of Y| X and Z|X are assumed to remain unchan-
ged across data sources. This method has demonstrated better performances than
the previous method in most different scenarios under different assumptions on the
data.

e We proposed a new formulation for data recoding as an extension of the model
developed in [27]. Two classifiers, f and g, are introduced to predict missing values
of Z in A and Y in B. The proposed algorithm minimizes the optimal transport
loss between the joint distribution of (X,Y,¢(X,Y’)) in database A and the joint
distribution of (X, f(X,Y),Y) in database B. Now, we are comparing this method
with the approach proposed in [VG2| under different assumptions on the data
distributions. Simulations are still in progress. For both algorithms, we provided a
bound on the prediction error. This new formulation has the advantage of handling
cases where Y and Z are continuous variables, which was not possible with previous

algorithms.

3.2.3 Heterogeneous domain adaptation

Notations and problem setting

In the following, the two databases are denoted by S = {i1,...,i,s} and T =
{1 dne b (X3, Y0))es and ((X,Y))) o be two sequences of i.i.d. discrete random
variables with values in R? x ) and R? x ), respectively, where ) is R or a finite
subset of R. Variables (X;,Y;),i € S are i.i.d copies of (X*Y®) and (X,,Y;),j € T,

7=
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are i.i.d copies of (X7T,Y7T). d(.) denotes a distance relative to the problem. The different

objectives are presented in section 3.2.1.

Background on Optimal Transport for Domain Adaptation

Optimal Transport for Homogeneous Domain Adaptation. Here, explanatory
variables are in the same space and d° = d*. OT can solve a DA problem (OTDA, [28])

YIXT — ,uYS|f(XS) and UXT = ,uf(XS) with f : R* +— ) a nonlinear

assuming that p
transformation of the input space, the transport map 7 is obtained by solving the OT
problem (defined in equation (3.2)) between X° and X7 : w = OT(w®, w’, C) where

$ =1,s/n°% w’ =1,0/n" and C € R**"" such that C;; = d(z?,zT). The transport
map between samples 7 € R >*n" is then used to calculate the barycentric coordinates of
the source samples in the target domain : M(x7) = ﬁ > jer Tij, - Finally, a predictive
function f7 is trained on the transported source data ((M(x?),y?))ics and applied on
the target data :I: , J € T to predict target outcomes : ij = fT(:I:JT), J € T. Developed
to deal with changes in the marginal distributions of the features and in the conditional
distributions of Y that can occur with real-world data but that are not handled by OTDA,
Joint Distribution Optimal Transport (JDOT) [27] consists in simultaneously optimizing

the coupling matrix 7 and the predictive function f7 by minimizing :

HHHZ Z

o d(@.@t) + LS S (@) (3.21)
mfr ieS jeT

where « is a hyper-parameter and £ is a loss function. A Block Coordinate Descent (BCD)
or Gauss-Seidel is performed to alternatively estimate v and f7 in practice. The authors
have shown the superiority of their approach through experiments on benchmark data-
sets w.r.t. several DA state-of-the-art methods, including previous OT-based approaches,
domain adversarial neural networks, or transfer components. A deep-learning version has

also been proposed [30].

Optimal Transport for Heterogeneous Domain Adaptation. The way OT maps
two domains as in OTDA or JDOT makes it impractical if these domains are in different
spaces. Co-Optimal Transport (COOT) [93] has therefore been developed to deal with
incomparable spaces, by simultaneously optimizing two transport maps between both
samples (7*) and variables (7?), thus allowing comparison between normally incompa-

rable distributions while providing two usable transport plans. The COOT problem is
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defined as :
ds dr
SGI'IInul)nw ZZZZ‘C zk? ]Z ﬂ-z]ﬂ-kﬁ (322>
”GH(vS o) lGSJETk 14=1
where v® and v” are the weights associated with the variables X7, ..., X7 and X{, ... X7

respectively. Both transport plans are optimized through a BCD, given the natural sepa-
rability of the problem, and is an improvement over other similar methods, in particular

[119] who consider a semi-supervised entropic Gromov-Wasserstein discrepancy.

Formulation of the algorithms. Let (X* X7T) € R¥+4" a vector of random variables
and (K, L) € {1, . ,ds} X {1, . ,dT} with K the random variable corresponding to the
index K of the Kth variable of the vector X and L the random variable corresponding
to the index L of the Lth variable of the vector X7. We assume that (X*, XT) and
(K, L) are independent. The distribution of K corresponds to the weight vector v and
the distribution of L to vT. Let

PSR x {1, d} 5 R
(xf,...,xdss,k)»%xf,
and PT Rde{l,...,dT}—ﬂR

(z],... xke, 0) — ],

The OTDA algorithm is an empirical vesion of the model which looks for 7% € T’ (M
that minimises E[c(X*, XT)]. The COOT algorithm is an empirical vesion of the model
which looks for 7% € T’ (MXS,,uXT) and w¥ € I (,uK,,uL) = II(v®,vT) that minimises
Ele(X5, XT)]. We then have :

XS’ MXT)

Elc(X%, X])] = E[(P¥(X* K),P"(X", L))
- Z/RdSXdT c(mf,x%)ﬂs(dws,dwT)ﬂ};,g
k.l

because (X, XT) and (K, L) are independent.
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Optimal Transport for Heterogeneous Domain Adaptation

The aim of the proposed method called Joint Distribution Co-Optimal Transport
(JDCOOT) is to deal with heterogeneous domain adaptation, with different feature spaces
and distribution shift across domains. We propose to use the principle of COOT, which
allows to match samples and features from incomparable spaces, to adapt JDOT to the
HDA framework (see figure 3.5).

SOURCE DATA ,_~_";_ e TARGET DATA

Variables . -~

alignment Tt
fs XT YT
nTxd? nfx1

n x1 ns xd’

FiGURE 3.5 — Heterogenous Domain Adaptation with Optimal Transport : JDCOOT

simultaneously solves the OT problem on the samples (7®) and variables (#w¥) as in
COOT, and the classification problems (f° and f7) as in JDOT.

Method. Let’s recall that the set of the sample indices where the outcome Y is observed
in the source and target samples are denoted respectively by Z° and Z7. The JDCOOT
method consists in simultaneously solving the OT problem on the samples (7®), the OT

problem on the variables (7w?) and the classification problems (f° and f7) :

ds dr

min EZZZ(ad Ligs L ]€)+£(fs( )fT( T)))W,]Wke: (3.23)

S £T
gy ies e k=111

nVel(vS wT)

where o is a hyper-parameter. f5(z;) = y; if i € Z° (i.e. y; is observed) and f5(z;) =

f%(z;), otherwise. fT is defined similarly on the target domain.

Optimization. Optimization is done by minimizing (3.23) with a BCD, as described

in Algo. 2. 7 and 7V are initialized randomly. f° and f7 are initialized with available
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data with observed outcomes if any. In the unsupervised case, f7 is initialized considering

transported source data by the transport map given by the algorithm COOQOT.

Algorithm 2: BCD for JDCOOT
Initialisation : 7w(y) <= 77, ;
for k=1... Kdo

i1y OT(w®, w”,C ® ﬂ'Z’k)) where ® is the Kronecker product
Tles1) < OT(v%,v",C® 7"&)) R
5 Train classifiers (gradient descent) f(i) to minimize (3.23) using, f(:’,;) k1)
and wz’k )

. f5 S . T rr
Ty < Tinit s S0y < Jinit s Jio) < Jinit

[uny

W N

6 | Train classifiers (gradient descent) ]?(2) to minimize (3.23) using, f(i +1) Tt

and 70 )

Simulation scenarios

I introduced scenarios designed to represent a particular case of domain heterogeneity

which also mimics the structure of our real data example.

The simulation study is based on several scenarios for data characteristics that are control-
led to evaluate their impact on JDCOOT performances. In our numerical study, an un-
derling relationship between the outcome and some explanatory variables (called active
variables) is assumed to be the same in source and target domains, heterogeneity for
domain adaptation coming from a masking strategy to define the set of actually (active
and non active) observed variables which differs between the 2 domains. Therefore, we
consider the following 2-step data generation process : (stepl) generate the explanatory
variables X and the outcome variables, denoted Y for a regression problem and Z for
a binary classification (logistic) problem and (step2) apply a mask strategy for handling

observed variables and imitate the heterogeneous case beteween the 2 domains.

Step 1 : Generation of explanatory variables X, and response variables Y and
Z. n independent samples of (X, Y, Z) are generated according to predefined distributions
that may differ in source S and target 7'

Ezxplanatory variables. Let X = (Xi,...,Xy) be a family of i.i.d. d-dimensional random

vectors with multivariate normal distribution AV (m, 3).
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Outcome variables. Two response variables are then generated, considering regression and
classification problems. In each case, the coefficients a = (aq, ..., aq) associated to the d
variables are such that p coefficients are fixed to a; # 0 (indexed by k1, ..., k,) and the
d — p others (indexed by kpi1, ..., kq) are fixed to a = 0 . When a;, # 0, the associated
variable is called active variable, as it corresponds to a significant link with the response
variables. We call sparse rate the proportion of active variables : st = . From this, we
define 3 be a 2x2-block matrix. The diagonal blocks take values 3, = Cor(Xg,, Xkl,) =
p‘f*m,Vﬁ, ¢ ¢ [1;p] and ¥, = Cor(Xy,, Xz, ) = p‘;*m,V& 0" € [p+ 1;d] respectively.

e Regression : Y is a continuous variable that depends linearly on X as follows :
Y=a'X+e, (3.24)

with € ~ N(0,0?). o is set so that the coefficient of determination R? of ¥ from

X reaches a given value, with :

V@'x) fei=1 V(X)) + 2350 3021 <, Cor( X, X))

R? = .
V(@' X) + o2 22,4:1 V(Xk,) +2 Z?:l Z?’:Lkg<k¢/ Cor(X,, Xk:y) + 0?2

e Classification : Z is a binary variable such that, for z =0, 1

T
a'T
(&

P(Z=2X =)= "y

(3.25)
ay, for active variables are set with ORy(z) = OR(x) = exp(ay) ', Vk € {k1,..., k,}

the odds ratio reaches a given value.

Step2 : Mask strategy for handling observed data. In source and target data, the
underlying relation between response and explanatory variables are the same. To simulate
an heterogeneous domain case, we consider two masks for observed explanatory variables.
Each mask allows to control the number of observed variables in each domain (d° and

d™) such as the proportion of active observed variables in each domain is fixed (pS and

1.

P(Z = 1|z =z and zp = 0,VK' # k)/P(Z = 0|z, = x and xp = 0,VE' # k)
P(Z =1|zpy =2+ 1 and xp = 0,VE # k)/P(Z = 0|z, = x + 1 and zp = 0,VE' # k)

OR; =
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pl) among the p variables with a; # 0. According to the learning case, the outcomes are

observed on a proportion p, of samples in source and/or target data.

Theoretical properties

We proposed bounds on the error of generalization of the prediction function f;? and

fg solutions of the problem defined in equation (3.23) in our current work.

Conclusion

Proposed method. In our work, we focused on the utilization of CO-Optimal Transport

for Heterogeneous Domain Adaptation (HDA). A classifier f is introduced to predict a
categorical or continuous target variable Y given an input X = x. The proposed al-
gorithm minimizes the loss function of CO-Optimal Transport between the source joint
distribution (X,Y’) and the estimated target joint distribution (X, f(X)). We have also

proposed a bound on the prediction error.

Simulation results. Simulations are still in progress. This work will be applied to real omic
data.
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3.3 Record linkage : extending the Fellegi-Sunter re-

cord linkage model

Motivations :

e Probabilistic record linkage (chaining) : a process of combining data from
different sources when these data refer to common entities and identification infor-
mation is not available.

e We can only use other partial identifiers (called matching variables) which are
common to both databases to identify matched pairs from the two databases. Our
data include various types of matching variables, including binary, categorical, and
continuous variables.

Contributions of the Chapter :

e Extending the Fellegi-Sunter record linkage model for mixed-type comparison va-
lues [VG14].

v" Two novel comparison approaches for low prevalence categorical matching va-
riables and continuous matching variables.
Collaborations :

e PhD of Huan Tanh Vo. Co-direction with Guillaume Chauvet (ENSAI Rennes),

Andre Happe (Université de Rennes 1) and Stephane Paguelet (IRT beom).
Perspectives :

e Record linkage using optimal transportation.

e Package R.

3.3.1 Introduction

Problem and objective

Problem. The first part of Huan Vo Tanh’s PhD work concerns probabilistic record lin-
kage (chaining), which is a process of combining data from different sources when these
data refer to common entities and identification information is not available. For example,
the GETBO project is a registry of venous thromboembolism (VTE) cases between 2013
and 2015 in Brest, France. The registry only recorded the demographic information for
each patient (date of birth, gender, residency code) along with some dates and types

of medical acts. This information is not sufficient to build an analysis model such as a
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prediction model which can early identify symptomatic VTE [89]. The French National
Health Data System is the national health data system which collects all the longitudinal
health records and insurance information of most of the French population [8]. The SNDS
comprises data from health insurance, hospitalizations, causes of death, and pathologies,
as well as a sample from supplementary health insurance systems. The valuable data in
SNDS can be used to enrich the registry, which is expected to lead to valuable knowledge
for researchers. This motivates us to link the GETBO and SNDS so that we can get more
medical information for GETBO patients and thus, to improve the subsequent statistical
analysis. Deterministic approaches can be possible when the combination of covariates
from different individuals produces a unique patient identifier. When no unique patient
identifier is available, or when such an identifier cannot be used for privacy reasons, al-
ternative approaches must be employed. In such situation, we can only use other partial
identifiers which are common to both databases (e.g., gender, postal code, or dates of
medical treatments) to identify matched pairs from the two databases. These variables
are often referred to as matching variables (see figure 3.6). atching variables) which are
common to both databases to identify matched pairs from the two databases. Our data
include various types of matching variables, including binary, categorical, and continuous

variables.

Objective. The objective is to link de-identified research datasets at the patient level when

a common individual identifier is not available using mixed-type matching variables.

Literature

The Fellegi-Sunter probabilistic record linkage model [47] laid the foundation for most
record linkage models until now [21]. However, the Fellegi-Sunter method employs only
binary comparison between matching variables. Firstly, the simple binary comparison is
not sufficient to account for the characteristics of low prevalence matching variables such
as cancer diagnosis codes [58]. For example, two patients who both have lung cancer are
more likely to match than two patients without cancer. However, the binary comparison
leads to the same matching probability for the two cases. Such cases are considered in
[58], who propose a Bayesian linkage framework outperforming the Fellegi-Sunter model.
However, their model is restricted to binary matching variables only. Secondly, this binary
comparison is not able to account for tolerances in the continuous matching variables, such

as the delay in the date of treatments reported in different sectors due to administrative
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process (see figure 3.6). These are the common types of matching variables in health data
as well as in GETBO and SNDS. Some authors introduced continuous similarity measures
for comparing string data, but then comparison values are transferred to categorical va-
lues representing different levels of agreement [e.g., 60, 99, 46], which may result in a loss

of information.

Matching variables
NIR Postal code | Echodoppler date | Cancer Matching variables

a; | $960999 29001 10/03/2014 1 NIR Postal code | Echodoppler date | Cancer
ay | 2930888 29002 17/05/2013 0 by | +960999 29001 12/03/2014 1

as | 2850666 29003 19/11/2013 0 by | 2930888 29002 17/05/2013 0

ay | $9905-55 29002 01/03/2014 0 : : : :

: 2 : by | +96-0186 29010 12/01/2015 0
a, | +360365 29010 6/09/2016 1

GETBO registry
SNDS

FIGURE 3.6 — Matching variable example.

3.3.2 Probabilistic record linkage

Consider two databases A and B containing n4 and npg records respectively, and with
elements in common. Following the terminology in [47], each possible pair of individuals
(a;,b;) with a; € A,i =1,...,n4 and b; € B,j = 1,...,np either belongs to the set of

true matched pairs

M ={(a,b);a=b,a € A,b € B},
or to the set of true unmatched pairs

U={(a,b);a#b,a€ Abe B}.

Because an identifying variable is not available, other less discriminant data are used in
the probabilistic record linkage procedure, such as the name, date of birth, postal code,
or some diagnosis codes. This information needs to be registered in both data sets and
is referred to as matching variables. The matching variables in the two databases are

required to have the same format [20].
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It is supposed that there is no prior knowledge of how likely the matches are, which is often
the case in practice. The strategy therefore begins by comparing K matching variables for
all records Xa; = (X};,...,X%,),i = 1,...,n4 of ny individuals in A, with all records
Xp; = (Xb,,--..XE,;),j = 1,...,np of np individuals in B. This leads to na x np
comparison vectors I'; ; such that

r;; ={I}

17], '

k K
L TE TR (3.26)
where Fﬁj = hF(X fu,X E,j) and h* is a comparison function for the k—th matching va-

riable.

Because the number of all record pairs is quadratic in the number of individuals in each
database, making the comparison for all possible record pairs is often impracticable in
applications. One of the most popular methods to reduce the number of record pairs that
need to be compared is blocking, in which only records from the two databases that are in
the same block (i.e., sharing the same values for the blocking variables) are compared with
each other. Record pairs disagreeing on the blocking variable are automatically classified
as non-matches. Therefore, blocking is a trade-off between computational cost and the
proportion of missed matches (matched pairs are missed because of errors in the blocking

variable), see [60].

The set of all possible realizations of I' is called the comparison space £. The comparison
function h* for the k-th matching variable can be defined in different ways depending on
the type of matching variable [20]. The most common way consists of a binary comparison,

i.e.

]_ if Xf\,z — X§7j7

Ff,j = hk(Xfl,i?Xg,j> = . k K
0 if XA’i =+ XBJ.

(3.27)

If there is no error in the matching data, all components of a comparison vector of a
matched pair are equal to 1. However, application data usually contain errors (e.g., ty-
pographical), and some similarity measures that can take them into account have been

developed in the literature for string variables [60].
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Once all candidate pairs are compared, various approaches are possible to classify the
set of comparison vectors into matches and non-matches [20]. If training data where we
observe the true matched status of record pairs is available, supervised classification me-
thods [19] can be used to find a classification rule. If there is no training data but some
clerical review is possible, some semi-supervised approaches [e.g. 45] may be applied. Ho-
wever, the exact knowledge of matches is rarely possible in real-world situations, and the
clerical review is costly. Unsupervised methods [e.g. 116, 83| are therefore the more com-
mon approaches. From a Bayesian perspective, Tancredi and Liseo introduced a paradigm
for probabilistic record linkage [104], and Steorts and coauthors proposed a Bayesian ap-

proach to graphical record linkage [102].

In the frequentist view, Fellegi and Sunter assumed that each record pair belongs to one
of the two latent classes [47]. The distribution of comparison vector I' for each pair is

assumed to follow a mixture model, for v € L,

P(Tij = ;) =P(Ti; =i | (ai,b;) € M)P((ai, b;) € M) (3.28)
+ ]P)(I‘i,j = Yi,j | (ai,bj) - U)]P’((az,b]) - U) (329)

If we do not make additional assumptions on the joint agreement pattern, the comparison
vector I' may take 2% different values, each of which corresponds to a parameter that we
need to estimate. To reduce this number, some authors [e.g. 47, 116] have proposed to
make the so-called conditional independence assumption between fields of the comparison

vector. Under this assumption, we obtain :

K

P [rm = (vhs ) (i, b)) € M] = kH P(T¥, =¥, |(a;, b)) € M), (3.30)
=1
K K

P [Fm = (Yigo > Yig)|(ai, by) € U] = kH P(I}; =5 l(ai, by) € U). (3.31)
=1

The conditional independence assumption is common in most probabilistic record linkage
models [116], although it may not hold in some practical cases. For example, if some re-
cords agree on a chronic disease, they are more likely to agree on the drug used. Although
the assumption is invalid in some cases, the linkage result is still quite robust, in the
sense that we may have a good linkage performance even if the conditional independence

assumption does not hold [116, 51, 100]. Some authors [e.g. 118] relaxed this assumption
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and showed better record linkage results in some specific scenarios.

Under the conditional independence assumption, we only need to estimate 2K + 1 pa-
rameters which are the marginal probabilities of agreement for matched and unmatched
pairs m* := P(y}; = 1|(a;,b;) € M) and u* := P(v}; = 1|(a;,b;) € U), and the overall
matching probability py := P((a;,b;) € M). Winkler proposed to apply the expectation
maximization (EM) algorithm [116, 37, 117], to find the maximum likelihood estimates
for the vector of parameters 0 := {pM, mFouk k=1,.. ., K}. It has become widely used
in probabilistic record linkage [51, 20]. Once all the parameters are estimated, the record

pairs may be ordered by either matching weights

o Py = 7igl(ai by) € M@
T P(Tay =il by) € UL0)

)

see [47, 7], or by posterior probabilities of matching G ; = P((a;,b;) € M|T;;,8) [76].
Then, the pairs are classified into matches, non-matches, or possible matches based on
two defined thresholds [47]. Because the possible matches require manual review which
is sometimes not available, Grannis and coauthors propose to establish only a single
threshold to avoid human review [51]. Although the matching scores and the posterior
probabilities produce the same ordering for record pairs [76], the posterior probabilities

are preferable in our case because they may be useful for further analyses [73, 71, 62, 122].

In some applications, a one-to-one matching restriction may be needed; namely, each
record in B can be matched to one and only one record in A, and conversely. One possible
approach to respect a one-to-one matching is to solve a linear sum assignment problem
proposed by [66]. If the optimal score is not demanded, a simple approach is to sort all
candidate pairs according to their estimated posterior probabilities of matching and to

select matched pairs in a greedy approach [20].

3.3.3 An extension of the Fellegi-Sunter model

In this section, we extend the Fellegi-Sunter model by making better use of low pre-
valence categorical matching variables and of continuous variables. Two new comparison

approaches and a mixture model for mixed types of comparison values are introduced.
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Comparison approaches

For a categorical matching variable, the proportions for each category are likely dif-
ferent, and accounting for these differences in a record linkage model may help to improve
the linkage results. This idea was proposed by Fellegi and Sunter and Winkler [47, 115],
and is applied to a real clinical data in [124]. These authors use the same model for simple
agreement /disagreement comparison, but the matching weights are rescaled a posteriori,
using a frequency-based correction. We introduce a new comparison approach for catego-
rical matching variables, which differs from simple binary comparison and may naturally

handle different proportions for categories.

Let X* be a categorical matching variable taking L different values, which means that
the comparison function for this variable may take up to L? values. For example, the

comparison for a binary matching variable may lead to four possible realizations :

{(0,0),(0,1),(1,0),(1,1)}
and a comparison function can be defined as follows
R*(0,0) = ¢, AF(0,1) =cy, hF(1,0)=c3 and R*(1,1) = ¢y, (3.32)

where ¢y, ¢o, ¢35 and ¢4 stand for four different categories. It should be noted that the va-
lues taken by the comparison function have no ordinal meaning. If this is a low prevalence
binary matching variable (e.g. a rare disease) such that only 5% (say) of the values in
the dataset are equal to 1, the agreement on the value "1" is much more informative than
the agreement on the value "0". Our comparison approach aims at using this information
while the simple agreement comparison method does not, leading to poor performance.
Hejblum and coauthors propose a Bayesian record linkage framework making use of a
similar idea, which is efficient in the case of a large number of low-prevalence binary mat-

ching variables. However, their model is designed for binary variables only [58].

If the number of matching variables and/or the number of categories is large, the number
of parameters to be estimated is L? — 1, which may be too large in practice. This number
may be reduced by assigning the same comparison value for the agreement/disagreement

of categories that have a close meaning. For instance, we may reduce the comparison
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values given in (3.32) as
R*(0,0) = c1, A"(0,1) = h*(1,0) = ¢, and hF(1,1) = cs. (3.33)

In general, the number of comparison values depends on which realizations we would
like to distinguish. Suppose that we are interested in a categorical matching variable X*
with categories 1,2,..., L. If the first category seems particularly meaningful, we may
distinguish whether we have an agreement on the first category, an agreement on another

category, or a disagreement. In such case, the comparison function would be defined as

c ifi=j=1,
Wi,j) = e fi=j#1,
cg ifi#£j=1,...,L.

The objective of this comparison approach is to distinguish the agreement of low pre-
valence values from other agreements, which differs from multiple levels of agreement

introduced in [99] and [46].

Now, let us consider the case of a continuous variable X*. For example, date variables (e.g.,
admission to the hospital, or medical act) are common in medical datasets. By converting
each date into a duration from a specified origin, they may be treated as continuous
counting variables. Even if an individual is present in both datasets, a lag between dates
is likely to appear. The simple binary comparison is therefore not appropriate. In this

work, if the k' matching variable is continuous, we propose to consider
LF; = (X4, X5,) = d(Xh, X55), (3.34)

where d is a distance which can be used to measure the difference between two dates
of events, in which case it can be interpreted as a time lag. By using the distance, the

continuous comparison values %kj of matching pairs (X%, X% ;) can be described as

) 0 with probability 1 — e*,
Fi7j|(ai,bj) eM=
eﬁ ;>0 with probability er,

where e” is the proportion of error, and €} is the error term of the " matching variable

among matched pairs. For example, two patients who refer to the same individual should
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have the same day for a medical act, up to some errors in the registration process, and the
distance should therefore be equal to 0 or to a small error term ei-f ;- Therefore, Fi ;l(ai, b;) €
M follows a hurdle distribution in which the positive part depends only on the distribution

of errors. On the other hand, the distribution of I'} ;|(a;,b;) € U depends mostly on the
k

distribution of the & matching variable, since €; ; 1s often small compared to the distance

between records for two unmatched units.

Estimation of parameters

Let

r,; = (!

Z?], '

K1 K1 1 Kl K2
LTI T T (3.35)

(2%

be a mixed type comparison vector which includes K categorical comparison values
It

I
framework, these comparison vectors are assumed to follow the mixture model (3.28).

oy Ffjl and K5 continuous distances Fff;“, e FffjﬁK? Following the Fellegi-Sunter

Under the conditional independence assumption between the different fields in the com-

parison vector for both the matched and the unmatched sets, we have

K1 3 . Ki+K> N
fFi,j\(i,j)EM(’Yi,j) = H P(Fi,j = %’,j‘(am bj) € M) H fr§j|(ai,bj)eM(%,j>a (3.36)
k=1 k=Ki+1
Py P2y
K1 Ki+Ko
fr, s japev(Vig) = [T PTE; = 705000, b)) € U) T fre janev (i), (3.37)
k=1 k=Ki+1
Pl p2U
¥ 7,7

fori=1,...,n4 and j = 1,...,np. For both equations (3.36) and (3.37), the first term
in the right hand side involves K categorical comparison values of the comparison vector

I'; ;. We define

m" P(Fﬁj = s|(ai, b;) € M) and u* = P(Fﬁj = s|(a;, b;) € U) for s € S¥, (3.38)
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with S* the set of all possible categorical comparison values for the k* variable. Then

HP — (e by) € M) = T] TT (mh) T,

k=1 scSk
K .
Pl = Hﬂ» = 4l(aib) € U) =TT TT (ub) 557
k=1 seSk
fori=1,...,n4and j=1,...,ng, and with S cqe m¥ = 3 cqr ub = 1.

The second part in the right hand side of equations (3.36) and (3.37) involves K5 conti-

nuous values of the comparison vector I'. We define

Ki1+Ks

PfJM = H fFf’j\(ai,bj)eM(/yzk,j) with frk ;l(aib )eM(%k,j) = f&(ﬁblfw)’
k=Ki+1
P (3.39)
2U k - k k( ik
Pi,j = H fr a,,bﬂeU(%,j) with fFf7j|(ai,bj)€U(’yi,j) = fu(ér),
k=Ki+1
fori=1,...,n4 and j = 1,...,np. The distributions f¥, and f¥ need to be postulated,

depending on the characteristics of the matching variables and on the chosen distance.

To find the maximum likelihood estimates for parameters, we apply the Expectation
Maximization (EM) algorithm [37] or the Expectation Conditional Maximization (ECM)
algorithm [84], depending on the distribution f*.

Once all parameters are estimated using the EM/ECM algorithm, the posterior proba-
bilities ¢; ; = P((a;,b;) € M|I';; = ~;;) are estimated for all record pairs by the Bayes

formula

=~  DIM p2M

puPbij B
~ DIM D2M =~ \plU p2U*
Pu by P+ (1= pu) Py P

These estimated posterior probabilities are then used to find proper matched pairs.

3.3.4 Conclusion

Proposed method. In this work, we have proposed an extension of the Fellegi and Sunter

model, particularly when the matching data contains various types of variables. We have

introduced a discrete distribution mixture model to handle categorical matching variables
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with low prevalence and a hurdle gamma distribution mixture model to handle continuous

matching variables.

Simulation results. The simulation studies show that our proposed model outperforms

the simple model with binary comparison in all the scenarios considered. For categori-
cal matching variables, we have shown that the proposed model is more efficient than
the standard model, especially when there are low prevalence values. However, if the fre-
quencies of the different categories of a matching variable are similar, then there is not
much difference between our approach and the standard one. In that case, the model with
binary comparison should be considered due to its simplicity. For continuous matching
variables, the proposed mixture of hurdle gamma distributions performs better than the
standard model and is robust to some misspecification of the distribution of the compari-
son function. However, our evaluation remains specific to the fact that we are dealing with
continuous time variables, which may be naturally modeled by Gamma distributions. We
also conducted a simulation with mixed-type data. Consistently with the previous simula-
tion results, the proposed model has better performances than the standard model. In the
application of real data, the performances are also better. We obtained a larger number
of patients matched between the SNDS and the GETBO datasets, with high matching
probabilities.
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3.4 Perspectives

3.4.1 Potential developments for the OT algorithms

Heterogeneous domain adaptation with mixed type covariates. The use of Co-
Optimal Transport is interesting when the covariate vectors in the two databases are of
different dimensions. However, these algorithms require that all components of the cova-
riate vector be defined on the same probability space, which is not the case when dealing
with mixed-type covariates. A project would be to adapt this algorithm to mixed-type

covariates.

Data recoding with different databases containing information collected at
different times for the same individuals. In our previous work, the questionnaires
to record the same information were different across different databases with different
individuals. However, this problem can arise across different databases containing infor-
mation collected at different times for the same individuals. So our model requires specific

adaptations in this context.

Statistical modeling on imputed data after data merging. When performing a
statistical analysis on the imputed data from the data merging process, the data distribu-
tion is modified. An objective would be to consider the data merging step to correct the
estimations of the methods when performing a statistical analysis using imputed data. A
predictive function could also be introduced in the models to combine the steps of data

merging and statistical analysis.

Record linkage using optimal transportation. Optimal transport may be a tool for

record linkage but algorithms still need to be developed.

3.4.2 Application to omics data

My work on data merging is part of a project in collaboration with IRSET whose re-

search focuses on identifying the impact of the exposome in childhood on health outcomes.

Problem. The exposome represents the exposures to which a person is subjected throu-
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ghout his/her life, including the chemical, microbiological, physical, recreational, and me-
dicinal environments, lifestyle, diet, and infections. Pregnancy (prenatal period), child-
hood, and puberty have been identified as particularly sensitive periods for which envi-
ronmental exposures may impact individual health trajectories. Lifecourse epidemiology
needs to integrate data from multiple sources and increasingly complex markers of expo-
sure and health effects that advances in biology, biochemistry, and bioinformatics have
made available. Compiling large and multimodal data from different sources would allow
to include more diverse populations and variable levels of exposure. The heterogeneity of

the datasets is a major difficulty.

We are here interested in the detection of environmental stressors that could impact
children’s health outcomes. In this context, the mother-child cohorts TIMOUN (Guade-
loupe, West French Indies, inclusions in 2004-2006), PELAGIE (Brittany, inclusions in
2002-2006), and EDEN (Poitiers, Nancy districts, France, inclusions in 2003-2006) are
particularly interesting as they gather information on the effect of pre and postnatal en-

vironmental exposure to pollutants on children development and adolescents health.

However, the information on exposure can be collected using multiple matrices, multiple
techniques, or multiple questionnaires between databases. Differences could be found bet-
ween two cohorts that are pooled for a joint analysis, or within the same cohort, at

different times of follow-up. So, there is a need to harmonize the exposure measure.

Multi-matrices exposure. Omics techniques (such as high-resolution mass spectrome-
try) are often applied to identify or even quantify the presence of pollutants in biological
matrices such as urine, blood, and hair. The same chemical compounds could be detected
in these different matrices. However, it often happens that, for some individuals, we don’t
have access to all the matrices. As an illustration, prenatal exposure to persistent organo-
chlorine pollutants can be estimated in maternal blood during pregnancy or in umbilical
cord blood at birth. When pooling several cohorts, one or both of the measurements may

be available for all or a sub-sample of these cohorts.

Multi-techniques exposure. Untargeted chemical analyses are currently being develo-
ped and may exhibit the presence of different identified or unidentified compounds within

the same biological matrix. Indeed, the laboratories have different techniques to analyze

65



Data integration

the samples and, by consequence, some molecules are “quantified” differently, even in the
same matrices. Furthermore, molecules may be not annotated so we can’t identify which

are common in the two files.

Multi-questionnaires exposure (or confounders). The questionnaires to record the
same information can be different across different cohorts or in the same cohort at dif-
ferent times. The variables have different modalities and different numbers of modalities.
As an example, children’s behavior may be reported using different psychometric tools
in two cohorts that are pooled or at different follow-ups of the same cohort. It can also
be the case for some socio-demographic confounders such as the educational level of the

mother, or the mode of daycare of the children that can be coded with different modalities.

Objectives. Our aim is to harmonize the exposure measures. Our OT algorithms and their

possible adaptations introduced previously could deal with these different problems.
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CHAPITRE 4

SURVIVAL ANALYSIS

My thesis and post-doctoral works are my first research projects in survival data
analysis, where the proposed methodology was motivated by a problem encountered in a
clinical trial (sections 1.2.1 and 1.2.2). The last part concerns the survival data analysis

of matched data (section 4.3 introduced in section 2.1.3).

4.1 Swurvival analysis of preventive clinical trials

Problem. No effective curative treatment currently exists for Alzheimer disease, making
its prevention a priority. During my PhD work, the rare published articles in the field
of prevention trials for dementia which measured Alzheimer disease incidence as their
primary outcome, had been negative [111]. The statistical analysis of these trials relies on
the logrank test. This test is known to be optimal under the proportional hazards model,
thus it may be inadequate for prevention clinical trials which may require a certain period
of exposure to an intervention before an effect can be detected. The proportional hazards

condition of optimality is unrealistic in this setting.
Objective. It is therefore conceivable to find more powerful tests that can capture non-
proportional effects in order to improve survival analysis of the primary outcome in ran-

domized controlled trials for the prevention of Alzheimer disease.

Proposed method. We proposed a methodology for using the Fleming-Harrington test,

which allows for the detection of late effects. This is a family of tests depending on a
parameter . The setting of clinical trials imposes two constraints : the parameter q value
must be fixed a priori and the sample size has to be calculated based on data similar to
what we expect to observe. So, the alternative hypothesis for which the test is optimal
for a fixed parameter q is studied, that gives a method for generating optimal data for

Fleming-Harrington. The main result is that this test is not sensitive to a variation of this
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parameter q which implies that variation on this specific parameter doesn’t significantly
influence the result of the test. Based on this, we proposed some tools for choosing an
appropriate value of q in a given clinical trial and we provided a sample size formula for

the Fleming-Harrington test for testing its optimal assumptions [VG6].

The constant piecewise test, which depends on a more easily explainable parameter, t, is
better understood by methodologists. Indeed, this parameter can be seen as the moment
when the late effects appear. A relationship between the parameters q and t was provi-
ded so that the Fleming-Harrington test with parameter q will be closest to the constant
piecewise test with parameter t. This comparison shows that the best test is Fleming-
Harrington [VG3].

Finally, the assumption of late treatment effects was relaxed. A new statistic defined by
the maximum between the logrank statistic and Fleming-Harrington’s statistic for a fixed
parameter q was proposed. Obviously, this statistic is powerful enough under late and
proportional effects. A method for calculating the required sample size for this test was
provided. This performance of this statistic was compared to the Supremum statistic on

time of a weighted logrank statistic [VG4].
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4.2 Effect of a correlated competing risk on marginal
survival estimation in an accelerated failure time

model

Motivations :

e Competitive risks can arise when subjects may experience competing events, which
censor the outcome of interest.

e Cox’s partial likelihood estimator treating competing events as independent cen-
soring is commonly used to examine group differences in clinical trials but fails to
adjust for omitted covariates and can bias the assessment of marginal benefit.

Contributions of the Chapter [VG5] :

e Bivariate normal linear (BNV) model generating latent data with dependent cen-
soring is used to assess this bias :

v Assess the effects of correlation between two competing risks on the estimator of
treatment effect in two-sample time-to-event studies in simulations with BVN
competing risks.

v Assess the robustness of the Cox model estimator of cause-specific hazard ratio
to correlation when data are generated under this BNV model.

e A novel Expectation Maximisation algorithm.

Collaborations :

e Post doctorate work with Malcolm Hudson (Macquarie University, Sydney), Val
Cebski (NHMR, University of Sydney) and Maurizio Manuguerra (Macquarie Uni-
versity, Sydney).

Package R : bnc.

4.2.1 Introduction

Problem and objective

In survival analysis problems, competitive risks can arise when a patient experiences an
event that prevents the occurrence of the event of interest being observed. The role of co-
variates in competing risks is often studied by modeling the cause-specific hazard function

[29] or the subdistribution hazard function [48]. In medical research, the Cox proportional
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hazards model is one of the most commonly used approaches to study the relationship
between variables and a time-to-event [29]. A competing risk occurring independently of
the event of interest provides independent censoring. The partial likelihood estimator in
Cox regression, modelling the individual cause-specific hazard function (which treats com-
peting events as independent censoring) is commonly used to examine group differences
in clinical trials. In this case, a coefficient estimated in Cox regression provides a hazard
ratio (HR) for the marginal survival of interest (with or without treatment). However, a
correlated competing risk introduces dependent censoring on the event of interest. When
the correlation of competing risks is not effectively controlled by model variables, neglec-
ted covariates can induce unobservable correlation [70], toward which the Cox regression
model is not robust [63]. The effect is that the estimated cause-specific HR may differ
from the marginal HR [68, 44].

Parametric Accelerated Failure Time (AFT) models, such as the Weibull model, provide a
valuable alternative to the proportional hazards (PH) assumptions [113]. In AFT models,
bias in estimating marginal effects from regression coefficients is again anticipated when

a correlated competing event censors follow-up.

This work is motivated by a study in which 143 patients have received surgery for metas-
tatic melanoma. The trial compares two highly correlated events, the local relapse (event
of interest) and the regional relapse (competing event) in a group of patients receiving

adjuvant radiotherapy and in a control group [90].

Objective. The objective of this work is to evaluate the bias of the marginal hazard ratio

estimator when competing events are correlated.

Literature

Bias in the assessment of marginal benefit with the presence of correlated com-
peting risks. The estimated cause-specific HR may differ from the marginal HR [68, 44].
Emura et al. analyze this difference under copula-based dependent censoring [43]. They
show that if the censoring probability is high, the difference is significant. Furthermore,
the difference inflates as the dependence (copula) parameter deviates from zero. Lu et al.

confirm in simulations that, in the presence of correlation, the estimated cause-specific
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HRs for an event of interest can differ substantially from the marginal HR of the event of
interest [80].

Why AFT models ? Hougaard notes that parametric AFT models are robust under
certain conditions where PH models are not [63]. Klein et al. and Lambert et al. argue
for parametric accelerated failure time models involving frailty-like terms as an effective
alternative to parametric PH models [75, 72]. Weibull AFT models share the PH proper-
ties assumed by the semi-parametric Cox regression model, facilitating trial power and
sample-size calculations under scenarios with varying treatment effects. In the alternative
lognormal AFT model, the regression coefficient for the treatment indicator represents
the treatment effect and its exponential provides the median ratio (MR, the ratio of
median survival with and without treatment). Hence AFT models with lognormal margi-

nals offer readily interpretable regression models for cause-specific median times to failure.

Our bivariate normal linear (BVN) AFT model is a specific case of the Deresa
and Van Keilegom model. Recently, Deresa and Van Keilegom review parametric and
semi-parametric approaches to regression modeling for competing risks and introduce a
multivariate normal regression model for dependent censoring [39]. Their model allows for
different forms of censoring (including loss to follow-up or termination of the study) and
for an initial parameterized power transformation of survival time. Assumptions for model
identifiability, including those required by the parameterized class of power transforma-
tions, are provided. The multivariate normal linear model of Deresa and Van Keilegom
[38] is a more general formulation of our BVN censored linear model. This earlier model
was applied in the simpler context of bivariate outcomes, identity power transformation,

and covariates common to both causes.

Why parametric modelling ? In many applications involving competing risk data,
individual events within a cluster may be correlated due to unobserved shared factors
across individuals. Many authors are then concerned with non-parametric statistical tests
for correlated competing risks data (see for example [15, 53]). Following Cox [interviewed
in 95], we argue that non-parametric and semi-parametric modeling in competing risks can
lead to overlooking the biases implicit in proportional hazards and independent censoring

assumptions, while parametric models can add biological insight.
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4.2.2 Linear survival models with dependent censoring

In this section, we establish notation and introduce the multivariate normal regres-
sion model of Deresa and Van Keilegom (the "DVK model") in the context of bivariate

outcomes.

It is convenient in simulating an AFT model to measure times on a log scale and to res-
trict attention to the occurrence of an event of interest (event 1) or the occurrence of a
competing event (event 2). While more than two events might be considered, interest in
many medical trials is focused on a single primary outcome, with any competing events
distracting from the measurement of treatment effect, with few observations to indivi-
dually model some causes. Thus pooling any competing risks together is common. We

restrict discussion to two event causes.

Since a competing risk is an event whose occurrence precludes the occurrence of the
primary event of interest, only the first-occurring event is observed ; the observed time to
an event is the minimum of two correlated times. Follow-up of events of types 1 and 2 are
both subject to independent censoring at log-time C'; both event types are subject to the
same censoring. This censoring is assumed to be non-informative. Therefore, we observe
(Y?, Dj) for j = 1...n, with Y = min(Y};,Y}»,Cj), and D; indicating event type or

censoring. Here

1: if the event of interest is observed,
D; = {2: if an event of a competing risk is observed,

0 : if no event is observed during follow-up.

The DVK model for competing risks

The study of the effect of correlation between competing events presupposes the exis-
tence of a joint distribution of latent variables. These are the latent failure times of each
cause. However, this joint density is non-identifiable, so estimation of parameters from
competing event data is not possible in a fully nonparametric context [see 107]. While
identifiability is recovered by appropriate parametric assumptions, it remains important

to evaluate the parametric model fit to observations.
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First, consider the case of two competing events. Assume latent event times are pairs
(Y71, Y5) with a bivariate Normal distribution, with a 2 x 2 covariance matrix ¥ common
to all subjects. Further assume each pair has expected values specified in a linear model
from covariates Xi,...,X,. We refer to this as a BVN regression model for competing

risks.

Specifically, assume that observations are an i.i.d. sample of size n from random vec-
tor (Y1,Ys, Xi,...,X,, C), with the conditional distribution of (Y1,Y5), given X; =
zy, ..., X, = x,, being bivariate normal with mean vector pu = (z' 81,z ' Bs) and cova-
riance matrix X, of dimension 2 x 2. Here Y; denotes the log-time to the event of interest
(k=1) and Y to an event of (any) other cause (k = 2), with = (x1,...,7,) . Regres-
sion coefficients 81, B2 form the columns of a p x 2 matrix B. Last, random variable C'

denotes the log-time to independent censoring. Assume hereafter that

1. (Y1,Y2)" and C are conditionally independent given (Xi,...,X,)", and that

2. Y1 — p1, Ys — po,and C are independent of (X7,...,X,)".

The DVK model extends the bivariate normal model to the multivariate case and applies
a parameterized transformation model to the log survival times of each cause. In it,

covariates are specified to be cause-specific. Thus the DVK model is
Aa(Ye) = 2" By + e, (4.1)

for causes k = 1,...,m, where A,(), is a generic parametric («) class of monotone in-
creasing transformations. The error vector (e, €z) is bivariate normal, mean vector O,

covariance matrix X.

In order to simplify notation, we confine discussion in the following sections to the BVN
model (m = 2) with all covariates for each cause in common and simple log transfor-
mation of survival times (A : y — y above). We use the more restrictive assumptions
of the bivariate normal model to simplify notation in later sections; this is particularly

appropriate when developing the Expectation Maximisation (EM) algorithm.
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Cause-specific hazards of competing events

With data on the log scale, the cause-specific hazard function to a first-occurring event
of cause 1 induced by the BVN joint distribution of Y3, Y5 is

M(y; B X)) = L}yiglopm € (y,y+dy)lY1 >y, Y, >y /dy

= lim PY1 € (y,y +dy), Yo > y] /[P[Y1 >y, Yo > y] dy].

Let ®(z) denote the survival function of the univariate standard normal distribution and
¢(z) the standard normal density. Let o1, 09 denote standard deviations of Y7, Ys. Define
standardized values a, b of y under the two marginals by a = (y — 1) /01, b = (y — p2) /o2,
where ;11 = " B is the expectation of ¥; and ps = x" B, is the expectation of Y. Then

the numerator of the above expression for the hazard function becomes

Jim PY1 € (y,y +dy), Yz > 9] /dy = fri(y) P[Y2 >y | V1 =y
b— pa
1
~atota ().
Here fy,(y) = 01" ¢(a) is the univariate normal density of Y; and p is the correlation

between Y; and Y5. The final equality for the numerator follows because the conditional

distribution of Y5 given Y] is univariate normal :
)
alVi = 9] ~ A (2 22y = ), 30— ) ).

Thus, defining the joint bivariate normal survival function as Sis(y1,y2) =

P[Y) > y1, Y2 > yo], we have

b— pa

M(y; B, X) =07 ¢(a) @ (m

) s$at) (12)
The corresponding hazard A;(y; B, ) for time to observing the competing risk is readily
obtained by exchanging a and b. The sum of these hazards equals the hazard of time to
the first event, their ratio determines the conditional probability of event type for first

events at log time .
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Likelihood function and inference

In this section, we set notations for censoring outcomes. We then define a likelihood
function for bivariate normal observations censored by a competing risk. In competing
risks data all observations are subject to censoring, not only by the end of follow-up but
also by competing events. When D; = 1, time to event 2 is censored by an observed
event of cause 1; ie. Yj; = y; is observed and Y;o > ¢ is censored. Similarly, when
Dj =2,Yjs = yj is observed and Yj;; > yf. Finally, D; = 0 when times to both events
exceed the period of follow-up : Yj; > y¢, Yj2 > y; for observed end time of follow-up
Y7 = y§. The distribution of Ci,...,C, need not be included in likelihood calculations

when censoring is independent and noninformative. Hence the likelihood function for

competing risk observations (Y? = y?, D; = d;; j =1,...,n) is defined as :
L(B,X; y°, d)

[T A@)PYe>|Yi=y5] x TI fa@)P V1> y] Yz =15
Jidj=1 Jid;=2

x TI S v9),

jid;=0

= I m@) Soapslys) T1 o)) Sie(wilyy) T Sie(vfv)), (4.3)

jidj=1 Jidj=2 J:dj=0

where Syjg(alb) = P[Yy > a|Ys=10], Sop(alp) = P[Ya > a|Y; =b], and, as before,
Sm(CL,b) :]P)[Y’l > a, Ys > b]

These probabilities depend on the design matrix X, the coefficient matrix B and the cova-
riance matrix X of the bivariate normal distribution. In the linear model, each observation
has its own covariate values, a row vector of the covariate matrix X. Let M = X B be the
matrix of expected values of Y = (Y1, Y3) where Yy, = (Yi,...,Y,) ! for k=1,2. Then
my, = X By, is the vector containing expected times to event k. Define z;, = (y° —my,) /oy,
with ), = | /Okx, for cause k = 1,2. Then (Y —M)W ~ BVN(0, R) where the 2x2 weight
matrix W is diagonal with entries 07!, 05", and R = (ll) " ) Thus, given the covariate
matrix X, all likelihood terms may be expressed in terms of the standard bivariate normal
distribution ; the likelihood is a function of p and values 2, z9, d dependent on the ob-

served random sample. 21, 2o are themselves functions of y° and parameters 81, B2, 01, 05.

The well-known separability of the likelihood by competing risk [68, Ch.8] in AFT models
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permits columns of B to be estimated individually after censoring events of other causes.
However, this separability depends on parameters not being common to components of
different causes. For the likelihood of the BVN model, some parameters, specifically those
of 3, are involved in factors for each cause. Only in the case p = 0 will the optimization
simplify. As noted above, a correlated BVN distribution assumption can be replaced by the
lesser assumption of cause-specific hazards A;(.), Ao(.) defined in equation (4.2) in order to
estimate B by Maximum Likelihood. However, in the correlated BVN distribution, these
cause-specific hazards will be functions of 3, which we treat as unknown. Therefore, the
optimization available for p = 0 is not readily available with correlated competing risks

(even when the correlation is known).

Expectation Maximization algorithm

An EM algorithm may be employed to fit the BVN linear model parameters B, X.
EM algorithms provide a steady assured convergence to ML or MPL solutions. In each
iteration, an EM algorithm imputes sufficient statistics of missing data (latent times of
each unobserved event), substituting expected values of sufficient statistics conditional
on observed data and current parameter estimates (E step). New parameter estimates
are then obtained from these imputed sufficient statistics as though they originated from
a complete sample (the M-step, [37]). An EM algorithm for the likelihood function of
survival Y], not subject to censoring by a competing risk, is described by Aitkin op.cit.
For the likelihood function (4.3) for bivariate observations (Y °, D), we introduce a new
EM algorithm summarised below as Algorithm 3 :

Here, current estimates of the model parameters in iteration i are () = <B(i), E(i))
The new estimate B@+1 of B is obtained as B = (X7 X)' XY with imputed Y. For
this estimation, when D; = 2, so that Y}, is censored by the event of cause 2 at y7, the
censored observation Yj; is imputed by E[Y;]Y; > yi, Yo = y;-’], where M = XB®,
When Dj; = 0, Yj; is imputed by E[Y1]Y1 > y¢, Y > y¥; 0], with a similar expression
for the imputation of Yj,. The expected values are calculated in each case by using the
current iteration’s matrix of means M@ and covariance matrix 2, and the conditional
expectations. A complete data sufficient statistic for the covariance matrix 3 is V =
(Y = XB)"(Y — XB) = Y'QY for known projection matrix @ = I — X (XTX)'XT.
The EM update to 3 therefore includes imputation of quadratic terms (squares and cross-
products) in (Y1,Y3). The new estimate is obtained using the censored observation y§ by

replacing linear terms as above and quadratic terms using appropriate conditional dis-
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Algorithm 3: EM algorithm for BVN model
1 Initialisation : 8° = (B° X%). We used initial values : p® =0; 6}&0) =0, 0,20) =1,
fork=1,2Let Q=T X(X"TX)1XT.
for i =0,1,2, ... do
3 E-step : replace the unobserved variables with their conditional expectations
given Y°, D, X,C at 8 :
a | if Dj =2, Yy < E[Y;|Yja > g7, Ya =55 6],
VA < EY Y >y Yie =ys 6],
5 if Dj =1, Y2+ E[Ya| Y] =93, Yo > y5; 0],
Yj?z A E[YfQ | Y1 = ys Yie > i 6],
6 | if D;=0,Y;1 « E[Y1|Y1>y2 Y, >ys; 09,
Y2 < EY1[Y1 > 95, Y2 >y 09], Y < E[Y2| Y1 > 37, Ys > yf: 09,
Yi1Yjo — E[Y;1Y,2| Y1 > Y7, Yie >y O(i)]
7 M-step : Maximize the likelihood of sufficient statistics XY and Y'Y of
equations (B2), (B3) of Appendix B in [VG5]. Calculate BU+D £+ yusing
equations (B1), (B4), (B5) to define Y, then equations (B6) and (B7) :

s | YO E[Y|Y° D, X,C; 0

9 B(i+1) — (XTx)leTY(z)
10 | nX0D < E[Y'Y|Y’, D, X,C;09] -YOTY®O 1 yOTQy®

N

tributions. For j' # j the statistical independence of observations reduces calculations
to imputation of linear statistics, but for ' = j more complex conditional expectations
must be evaluated. For example, when D; = 1, the quadratic term Y321 is a known quan-
tity. But, when D; = 2, a quadratic term Y7, is imputed using E[Y}[Yj1 > 9, Yj2 = y5].
Similarly, when D; = 0, the same term is imputed as E[Y}?[Y1 > y9,Yj2 > ¢?]. When
D; = 0, we further require E[Y;,Y]|Y;1 > Y7, Yo > y;’] Again these conditional expec-
tations are calculated assuming current parameter values B®, () which provide the
mean vector (mgq, mgg)T We provide all required moment results for the EM algorithm
in a bivariate normal censored linear model in appendix A in [VG5], and include the
corresponding R-code in the package bnc. Both the EM algorithm and these results for

the bivariate normal distribution appear to be new and may prove useful in other contexts.

Standard errors of the EM algorithm solution are available using the numerical differen-
tiation of Fisher scores (NDS) method of [65] and implemented in the R package turboEM
[10]. The score statistic is derived from evaluations of the score function Q(@, @) which is

accessible for computation using our probability results for the BVN complete data.
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Mildly Penalize Likelihood

Convergence to a boundary point of the parameter space can introduce issues for
optimization methods. Optimizers such as Newton’s method break down near boundaries
when iterations take them outside a constrained domain (such as |p| < 1). Specialized
methods are available for constrained domains, but may affect the speed of convergence
of the algorithm. In particular, the EM algorithm’s rate of convergence is reduced when
0 lies on or near a boundary [88]. This is problematic when conducting large numbers of
simulations. The rate of convergence is particularly affected in regions of flat likelihood.
It is common to observe improvement after introducing a penalty term in the likelihood
[52, 22]. Therefore, we regularize by penalizing log-Likelihood log L = log L(B, X ; y°, d)
as :

log L < log L — (v + 3) x log(det(X)/2 — ktr(X71)/2

where v is a positive integer, the degrees of freedom parameter of the inverse-Wishart prior,
3 ~ IW(v,kZ), whose posterior distribution provides the penalty term [122]. Higher
degrees of freedom increasingly encourage a solution consistent with the prior mean, for
which we specify a multiple (default x = 1) of the identity matrix. We then utilize the
turboEM algorithm for this MPL, using an accelerated EM form (method squareEM) [10].

4.2.3 Conclusion

Proposed method. In this study, we used a joint modeling approach for competitive events,

enabling the consideration of potential correlations between these events. We have pro-
posed a bivariate normal linear AFT model that generates latent data with dependent
censoring to assess this bias. For the estimation of model parameters, the BVN model
lends itself to the implementation of a novel Expectation Maximisation (EM) algorithm
generalizing a similar algorithm for univariate survival proposed by Aitkin [3] This EM
algorithm provides a solution for maximum likelihood estimation or penalized maximum

likelihood estimation.

Simulation results. The parametric specification as a bivariate normal distribution to-

gether with likelihood penalization better regularizes an otherwise ill-posed problem, as
demonstrated in simulations. This stabilization of parameter estimation, together with
the model’s ability to estimate marginal hazards and directly introduce correlation, are

strengths of the strong parametric assumption.
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Our simulations show the estimates of regression coefficients are reliable. These regression
coefficients provide means and mean differences (relative differences when survival times
are log-transformed). While the correlation estimation is unstable (even in sample size

n = 1000) it exhibits little bias; it may find use in validating external information on p.

Alternative Cox models are based on proportional hazards assumptions, which differ from
those of AFT models. Moreover, with a positive correlation between competing risks our
results on estimating marginal treatment-benefit show that Cox models are not robust to
departures from a correlation p = 0. Thus the BVN model is a useful development for
application when a strong correlation of the survival outcome with a competing risk is

suspected, perhaps as a consequence of unmeasured covariates.

The BVN linear model assumes that the time-to-event distribution is lognormal. While
the parametric form of hazards is difficult to identify from data, simulations with non-
normal data suggest the model is robust. Our simulation findings concerning the lack of
bias in regression parameter estimation are in accord with those of a different approach,
which induces a correlation between latent event times through a copula model [17]. Ho-
wever, when the degree of association is misspecified in the copula, regression parameter
estimates are severely biased. This indicates an advantage of the use of the BVN model,

which provided reliable estimates by adapting to the level of association in the data.

Guidelines. The parametric model can be readily used as a sensitivity analysis for asses-
sing the effects of correlation induced by neglected covariates. This method can introduce
external information on the association of competing risks to assess its influence on other
parameter estimates. Because of the uncertain ability to estimate p, our simulations consi-
dered an alternative to MPL estimates of treatment effect in the BVN model, fixing p to

provide restricted estimates of other BVN model parameters.

Regression estimates of treatment effect may differ from corresponding Cox coefficients
due to different models (accelerated failure time versus proportional hazard). When de-
pendent censoring is present, and fitted parametric cumulative incidence functions agree
with semi-parametric estimates, the BVN model can prove useful in estimating treatment

effect for comparison with findings of alternative PH model fits.
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4.3 Survival analysis of matched data

Motivations :
e Acounting for matching errors in survival data analysis when the record linkage
process is not known.
=—> we don’t have access to the matching variables and the individual matching pro-
bability estimates but we access an audit sample.
Contributions of the Chapter [VG13] :
e A bias-corrected estimating equation for Cox regression analysis with linked data
and a variance estimator for the adjusted estimation of Cox regression coefficients.
Collaborations :
e PhD of Huan Tanh Vo. Co-direction with Guillaume Chauvet (ENSAI, Rennes),
Andre Happe (Université de Rennes 1) and Stephane Paquelet (IRT beom).
Perspectives :
e [Acounting for matching errors in survival data analysis when the record linkage
process is known.
PhD of Vanessa Chezeu. Co-direction with Jean-Francois Dupuy (INSA, Rennes)
and Samuel Bowong (University of Douala, Cameroon).
e Package R.

4.3.1 Introduction

Problem and objective

Problem. The second part of Huan Vo Tanh’s PhD work concerns the statistical analysis
of matched data when the variable of interest is a lifetime. Indeed, perfect matching is
never achieved, and neglecting associated errors can lead to biased estimates. In most
applications, the ultimate goal of record linkage is to obtain a linked dataset for a sta-
tistical analysis. Neter and his coauthors emphasized the potential biases associated with
matching errors, which come in two forms : false links and missed links [87]. False links
refer to records that are considered linked when they do not actually correspond to the
same entity. On the other hand, missed links are records that refer to the same entity
but are not identified as linked during the matching process. Since unique identifiers are

not available or matching variables are likely to contain errors, false links are inevitable,
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regardless of the record linkage method used. Therefore, the secondary analysts should
be aware of linkage errors, and choose a suitable strategy to avoid biased estimators. In
the absence of linkage errors, the estimation of coefficients in the Cox regression model is
straightforward and approximately unbiased [4]. However, simulations demonstrate that
even a small rate of linkage errors can lead to biased parameter estimation in the Cox

model.

Objective. The objective is to account for linkage errors in the estimation of the parame-

ters of the Cox proportional hazards model.

Specific problem. We consider the situation where explanatory variables and individuals’

lifetimes are not reported in the same database (i.e. GETBO registry and SNDS data).

We aim to conduct survival analyses in the dataset where we observe the lifetime variables
(i.e. GETBO registry). However, we do not observe the true explanatory variables in this
database but rather the variable obtained after linking with the SNDS dataset (see figure
4.1). In some cases, the persons performing the record linkage and the analysis may be
the same, which is referred to as primary analysis. In other cases, the record linkage is
performed by a trusted third party, and the person performing the statistical analysis has

limited knowledge about the record linkage, and in particular the matching variables.

SNDS
Matching variables GETBO registry
NIR Postal code | Echodoppler date | Cancer | Exposure Matching variables Survival variables
a; | $960999 29001 17/05/2013 0 No NIR Postal code | Echodoppler date | Cancer | Duration | AVC
ay | 2930888 29002 17/05/2013 0 No by | 1960999 29001 12/03/2014 1 7 0
ag | 2850666 29003 19/11/2013 0 Yes by | 2930888 29002 17/05/2013 0 9 1
ay 565 29004 01/03/2014 0 No : : : : : : :
: : g b, | +96-04-86 29010 6/09/2016 1 15 0
an, | +860365 29010 12/01/2015 0 No
GETBO registry
Matching variables Survival variables
NIR Postal code | Echodoppler date | Cancer | Duration | AVC | Exposure
by | $960999 29001 12/03/2014 1 7 0
el
by | 2930888 29002 17/05/2013 0 9 1 S
: : : 2 |
. . . . . . 8
b, | 1900186 29010 6/09/2016 1 15 0 A

FIGURE 4.1 — Analysis of linked survival data
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Literature

Numerous authors [e.g. 73, 13, 122] have addressed this issue and proposed different
methods to account for these linkage errors. However, these methods are mainly designed

for linear and logistic regression models.

4.3.2 Cox regression analysis with linked data without know-

ledge of record linkage process

Cox regression model

The Cox proportional hazard model [29] is the most popular method to assess the
effect of explanatory variables X on a survival time. This is therefore one of the most im-
portant models in medical research. Suppose that a random sample of n units is available.
For each unit i = 1,...,n, we let T, be a non-negative random variable, which denotes the
duration between a time origin and the time of occurrence of some event of interest. We
suppose that T, is right censored, which means that the event is observed only if it occurs
before censoring time C;. For units ¢+ = 1,...,n, we therefore observe T; = min(fi, ).
We let 6, =1 (Ti<ci) denote the variable indicating whether the duration time is obser-
ved before censoring. We assume the censoring time C' is non-informative of the survival
parameter and independent of the true event time 7. The vector of explanatory variables
is denoted as X; = (X1, ... ,Xi,p)T. In this section, we first suppose that X; is observed

for any unit in the sample.

According to the Cox model, the hazard function of an event at time ¢ is given by
A(tX:) = Xo(t) exp (X 8) (4.4)

where Ao is an unknown non-negative function of time (the so-called baseline hazard
function) and B = (B1,---,8,)" € RP is the unknown coefficient in the Cox PH. Let
0 = {Ao, B}, with Ag(t) = [3 Xo(s)ds, is the set of parameters to be estimated. An
estimator B of B is obtained by maximizing the partial likelihood, given by :
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( exp(87 X.) ))‘*, (4.5)

L(,B) = H EZ:l Y}(Tl) exp<ﬂTXk

i=1
where Y(t) = 1(z,>y) is an at-risk indicator [see for example 4]. Differentiating log L(f3)

with respect to B yields the following estimating equation :

™ {Xi_ 1 Y5(T) exp (X B) Xﬂ'}:o, (46)
= " Yi(T3) exp (XTB)

S|

Hy(B) :=

)

We call (4.6) the theoretical estimating equation. The solution of this equation is called
the maximum partial likelihood estimator of 8. It is consistent and asymptotically normal
[4]. Under some mild assumptions, a consistent estimator of the covariance matrix of 3 is

given by

o~

Vuni(B) = {~nVH,y(B)} . (4.7)

see [4].

Linkage error model

Suppose that we have a dataset A of ny time-to-event data. If the explanatory va-
riables X; were known for any unit ¢ € A, the parameter of the Cox model would be
estimated by solving the theoretical estimating equation (4.6). However, if the explana-

tory variables are not known in database A, equation (4.6) may not be solved in practice.

In order to obtain the needed explanatory variables, a linkage is performed with a dataset
B of size ng > ny4, containing in particular the auxiliary variables X;. For any unit 7 in A,
we note Z; for the vector of auxiliary values resulting from the linkage process. Reasoning
from the secondary analysis perspective, we do not have access to the matching variables

and do not know the actual linkage process.

We assume that the linkage error is non-informative of the regression model, i.e. may
depend on the errors in the matching process, but not on the model explanatory variables
nor on the survival time [e.g. 14]. This is the key assumption of most secondary analysis

approaches in the literature, for which Zhang and Tuoto have proposed a diagnostic
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test [121]. Adopting the modeling approach in [23], we suppose that both databases are
partitioned into blocks A, and B,, v =1,...,V, and that the record linkage is performed
independently in these blocks. Also, we suppose that for any entity ¢ € A,, we have :

z. — { X; with probability ay,, (4.8)

Xy with probability 1 — a,

where (j) stands for some unit randomly selected in database B,. In other words, it is
supposed that for any i € A, the correct entity is linked to ¢ with probability «,,, other-
wise, the unit j linked to ¢ is randomly selected in B,. We suppose that the linkage is

performed independently for any unit ¢ € A,, conditionally on the X;’s for j € B,.

It should be noted that we implicitly assume that A is a subset from B and that all entities
in A can therefore have some matching records in B. Also, we assume that there is at
most one link for each record of both databases. We assume that the linkage is complete,
or alternatively that any missing links are independent of the time of event and model

explanatory variables.

Adjusted estimating equation

By naively treating the linked explanatory variables Z; as if they were the true expla-
natory variables X; for the units i € A, an estimator of By may be obtained by solving

the following equation :

1 \4
Hnaive(ﬁ) = Z Z 0;

nNA =1 ica,

v
{Zi B D1 jea, Yi(T3) eXP(ZjTﬁ)Zj} —0. (4.9)

Yot Yjea, Yi(Ti) exp(Z] B)
We call (4.9) the naive estimating equation. Since some units are incorrectly linked, it

may lead to biased estimates.

We propose a bias-corrected estimating equation, accounting for the fact that from the hit-
miss model (4.8), the explanatory variables may be incorrectly linked. We first introduce

some notations. Let us define

g(B,X;) =exp(X/B) and h(B,X;) = exp(X, B)X,.
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Also, let X, gp,(8) and hg,(8) denote the means of X;, g(8,X;) and h(8,X;) over B,,
respectively. The linkage-error adjusted estimating equation (AEE) is given by

_ 1 Yot Yjea Y~(Ti)h*-(04mﬂ)}
H(B) = — 6 3 X (ay) — S ISR I =0, 4.10
Or=sX (it - S Sien. (155 @ B) 10
where, for any i € A,,
X;i(a) = ' Z; — (o = 1)Xp,,
g;(av7 /6) = O‘zjlg(zja - (Oé;l - 1).&31;(5)7 (411)

h;(OZU, /8) = Oéglh(zﬁ

We prove that H () is an (approximately) conditionally unbiased estimator for the func-

tion Hy(B) involved in the theoretical estimating equation.

Since there is no closed-form solution for the estimating equations considered above,
an iterative method like the Newton-Raphson algorithm is commonly used in practice.
Also, the probabilities v, may be (somewhat arbitrarily) specified by the record linkage

practitioner, or estimated from an audit sample [13, 121] if their true values are unknown.

Variance estimator

In this section, we discuss variance estimation for the estimator of the parameter [,
obtained by solving the AEE given in (4.10). We first note that several sources of variance
need to be accounted for a) the (usual) variability associated with solving a sample-based
estimating equation, b) the variability associated with the linkage process, and c¢) the
variability associated with the estimation of the probabilities o,, v =1,...,V. Using the
variance estimator given in (4.7) fails to account for all these sources of variability, and

therefore leads to an underestimation of the variance (see the simulation study in [VG13]).

We propose a sandwich-like variance estimator, which reads as follows :

Vape(B) = {VH(B)} ' x V{H(B)} x {VH(B)} ", (4.12)
with V{H(B0)} = Vi {H(Bo)} + Vo{H(Bo)}. (4.13)

The first component V;{H (8o)} in (4.13) accounts for the variability in (c). Under the
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assumption that the validation samples .S, used for such estimation are selected in the
datasets A, through simple random sampling without replacement, this variance estimator

is

ns, 1-— 6(1,

vl{ﬁ<ﬂ0>} = Z 2,v(a073){ﬁ2,v<av73>}—r X (1 - 1 ) 9

nSU nAU nS’U - 1 a%

where ng, is the sample size of the validation set S, and

a0, B) = = 3 5:{(Z: - X,

i€EA,
- Yjea, Yi(T) {{n(B,Z)) — hp,(B)} — Ri(aw. B) {9(B. Z;) — g5,(B)}}
2 jea, Yi(Ti)g; (o, B)

}.

with

ZjeAv Y](E)h;(a’m /8)

R (aw, B) = '
z(a B) Z].GADY}(E)Q;<@U7/B)

The second component Vo{ H(B,)} in (4.13) accounts for both the variability in (a) and
(b). We have

T, ()} = 1)
where
1 1 Y ’
4o - 5 (- LS 8 o]
na v=14i€A, nNA v jea,
and

. Zq‘)/zl ZjeAU Y;(Tz)h;(a/v? /3) }
Y1 Yjea, Yi(T)gi (@, 8)

4.3.3 Conclusion

Proposed methodology. By adopting the hit-miss linkage error model [23], we have pro-

posed an adjusted estimating equation for Cox regression with matched data. This model

aims to correct the bias present in the naive approach that ignores errors arising from
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false links. We also introduce a variance estimator for the estimated regression coefficient.
This variance estimator captures the entire variability, including that arising from linkage
errors. In practice, accessing a random audit sample is necessary to estimate the errors
introduced by false links. In this audit sample, we know whether the predicted links are

correct or not, as the actual matching variables are not available.

Simulation results. Our simulations proved that the naive use of linked data may lead

to substantial bias in a Cox regression model. Through various simulation scenarios with
one block and also multiple blocks, the proposed adjusted estimating equation is shown

to lead to substantial bias reductions as compared to the naive estimating equation.

87



Survival analysis

4.4 Some methodological guidelines for epidemiology

4.4.1 The minimum number of subjects at risk required to in-

terpret a Kaplan-Meier curve

Problem and objective. Still in the field of survival analysis, a frequently asked question

by clinicians is the acceptable number of subjects at risk to interpret a Kaplan-Meier

curve, which represents the estimation of the survival function of an event of interest.

Proposed methodology. In this work, we proposed a reliable index to determine the

amount of information required for constructing Kaplan-Meier curves over time [VGS].
This index guides the user on the minimum number of subjects at risk needed at any
given time in the study to ensure a reasonable interpretation of Kaplan-Meier estimation
at different time points. It also allows the user to understand up to what time point a
Kaplan-Meier curve can be extended. The construction of the index is based on both the
magnitude of the decrease in Kaplan-Meier estimation as an additional event occurs over
time and the variability of the estimation if all subjects had been followed until the point

of interest.

Let us consider a sample of N subjects followed over time until the event of interest occurs.
Let S(t) be the Kaplan-Meier survival probability estimator at time ¢ when n(t) subjects
remain at risk. At time t = 0, n(0) = N, S(0) = 1, and S(t) decreases over time as events
occur. If an additional event had occurred immediately after time ¢, the decrease in the

estimated percentage of subjects not experiencing an event would be A(t), where
A(t) = 1005(t)/n(t)

is defined for n(t) > 1. We refer to A(t) as the sensitivity index of the survival estimate at
time ¢. If the estimated survival probability S(t) at time ¢ is high and only a few subjects
remain at risk, the sensitivity index will be substantial, indicating the potential for a large

gap in the Kaplan-Meier curve due to a single additional event.

We propose that the decrease in survival estimate at a time due to the occurrence of an

additional event does not exceed the width of the 95% one-sided confidence interval for
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survival based on "complete information," which is given by

A(t) = 100 x S(t)/n(t) < 100 x 1.645 x \/S(t)[1 — S(t)]/N

which leads to

n(t) > 1 NS(t
T 1645\ 1 — S(t)

We interpret this as evidence that enough subjects remain at risk at time t for the mea-

ningful interpretation of the Kaplan-Meier plot.

The approach is applied to various epidemiological studies. The proposed index is straight-
forward to compute, provides guidance to users on how to extend the Kaplan-Meier curve
(graphically), and prevents premature conclusions from being drawn due to insufficient

information at any given time.

4.4.2 Study of the association between air pollution exposure

and cancer risk

We provided guidance on the specific methodology of this study.

Problem. Black carbon (BC), a component of fine particulate matter (particles with an
aerodynamic diameter of less than or equal to 2.5 um (PMsy5)), may contribute to the
carcinogenic effects of air pollution. This study aimed to estimate the associations bet-

ween long-term exposure to PMs 5 and the risk of cancer.

Data. In this study [VGa7], the influence of different methods for assessing exposure to
PM, 5 on cancer risk estimates is examined in the large French Gazel cohort, a population-
based cohort with 20,625 participants at enrollment, followed for 26 years, and with com-
plete residential histories. Two endpoints of cancer incidence were investigated : all cancers
combined and lung cancer. Two distinct methods for assessing PMs 5 exposure were em-
ployed : a land use regression (LUR) model for Western Europe (covering the period from
1990 to 2015), and a chemistry-dispersion model (Gazel-Air) for France (covering the
period from 1999 to 2015), each with a time series of annual concentrations spanning at

least 20 years.
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Proposed method.

Use of cumulative exposure to BC.

The exposure decreasing over time and cancer incidence increasing with time, we could
observe a positive effect of exposure on cancer incidence. Therefore, we chose to consider

cumulative exposure.

We utilized the extended time-dependent Cox model, with age as the time scale and cu-
mulative exposure to BC as the time-dependent covariate, adjusted for sociodemographic
and lifestyle variables. This model expresses the instantaneous risk function of developing
cancer at time ¢ as a function of time-dependent exposure X (¢) and sociodemographic

and lifestyle variables Z :

MHX(8), 2) = Ao(t) exp (B X () + B) Z) ,
where (5, and B, represents the coefficients.
To account for the latency between exposure and cancer diagnosis, we applied a 10-year

lag. Therefore, we considered only cases diagnosed between 1999 and 2015, with corres-

ponding exposures occurring 10 years prior to incidence/censoring.
Use of piecewise Cox model due to nonlinearity.

To test the non linearity, we used spline functions with three degrees of freedom to re-

present the exposure in the Cox model (without adjustment) :
p
X(t) = ayp;(t)
j=1

with ¢1,..., ¢, a B-spline base and «;, j = 1,...,p coefficients. Figure 4.2 depicts the
corresponding HRs of cancer and their corresponding confidence intervals concerning cu-
mulative exposure, using the lowest exposure as a reference, for both exposure assessment

methods. The "slope" HRs on the left side of the plot illustrate the slope of the curve
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FIGURE 4.2 — Associations between cumulative PMs 5 exposure estimated using either
LUR or Gazel-Air and the risk of all types of cancer in the Gazel cohort.

below the 65th percentile of exposure (dashed vertical line) at 315 ug/m? for LUR and
185 pg/m3 for Gazel-Air. These HRs are expressed for an increase of one interquartile
range (IQR) in cumulative PM, 5 exposure (IQR = 216 pug/m? for LUR, 127 pug/m? for
Gazel-Air). On the right side, the "plateau' HRs represent the plateau above the 65th
percentile of exposure, calculated for the 80th percentile of each exposure assessment me-
thod (380 pg/m? for LUR, 215 pg/m? for Gazel-Air).

Due to this nonlinearity, we modeled the relationship with a piecewise linear model,
introducing an interaction term between PMs 5 exposure and a binary variable indicating

whether exposure was below or above the 65th percentile. The model is written as :

At X (1), Z) = Mo(t) exp (51]1{X(t)<s}X(f) + Bol x>} X (1) + +ﬂ3TZ) ,

with s the threshold correspond to the 65th percentile of the exposure X(t), 81, 52 and

B3 represent the coefficient.
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4.5 Perspectives

4.5.1 Acounting for matching errors in survival data analyses

with a known linkage process

Specific problem. In the context of Vanessa Chezeu’s PhD, we consider a scenario where

the linkage process is known, and we have access to the matching variables as well as
the individual matching probability estimates. These probabilities allow us to link each
patient in the SNDS to her/his most likely counterpart in the health registry. These pro-
babilities also convey some uncertainty in the matching process, and this uncertainty must

be taken into account in any subsequent statistical analysis.

Proposed methodology. Let’s recall the notations. Suppose that we have a dataset A of

n4 time-to-event data. Recall that we do not observe the explanatory variables X;. In
order to obtain the needed explanatory variables, a linkage is performed with a dataset
B of size ng > n4, containing in particular the auxiliary variables X;. We know that
the explanatory variable vector for individual ¢ takes one value from the set {x, - - @, }
in B. For any individual 7 in A, we note Z, for the vector of auxiliary values, that will
be affected to the individual, resulting from the linkage process. We wish to estimate 3
in model (4.4) described in section 4.3.2. From the record linkage process described in

chapter 3.3, we know that
P(Z =z;)=q;, j=1,...,ng,
where
¢, =P((a;,b;)) e M |T;; ==;), i=1,....,ngand j=1,...,np (4.14)

are the posterior probabilities of matching introduced in section 3.3.2. We define the

normalized probabilities

p = i
D A
so that they sum to 1 for j = 1,...,ng. We proposed several estimation methods for the

parameter (3.
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A naive approach

According to the record linkage process, for each unit i € A, the choice of the Z; value
depends on the posterior probabilities {¢; ;,7 = 1,...,np} estimated for each comparison

pair. We propose to replace X; by the surrogate Z;, defined as :

Z;=x; where j= argmax.;., (q;)

By naively treating the linked explanatory variables Z; as the true explanatory variables
X, the partial likelihood in this case is obtained by replacing the values of X; by the
surrogate variable Z; in the equation (4.5) from which we can estimate 8 by an estimator

Bnaive Obtained by solving the estimating equation (4.6) by replacing X; by Z;.

To reduce the bias of this naive estimator, we proposed several approaches to take into

account the probabilistic aspect of the linked explanatory variables Z;.

Weighted average approaches

We first propose that Z; is the average of all the available explanatory variables x;,

Jj =1,...,np, weighted by the posteriors matching probabilities p; ; such as :

npg
Z; = szijj-

Jj=1

The partial likelihood in this case is obtained by replacing the values of X; by the surrogate
variable Z; in the equation (4.5). The estimator Bw, of B is obtained by solving the

following equation :

na

B SA L SN V(T prexp (B x;) x5
Hy1(8) ::Z(Sz‘ Zpi,jwj— knlA ]53 . ( Tj) =0
= Sy 208 Yi(Ti)pr,jexp (BT x;)

=1

For individual 4,7 = 1,...,n4, let p; j, ;) and p; j,;) be the highest and the second highest

elements of the vector (p;1, ..., ping) ' respectively :
Piji = Piqn() = | 208X Pij and  pij, = Pija(i) = it S Pid®
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and Zj ;) and Zj,;) the j; and j, elements in the vector (x1,... Tn,) . Let Py =
Dije(i)/ (Diji i) + Pijoi)) for k = 1,2. We propose to replace X; by Z; = P Zie) +
ijQ(i)ZjQ(i). Similarly to the previous method, an estimator Bw. of B is obtained by

solving the estimating equation :

HW2 25 {(pl]1 () )+p132(1)z ())
XA YT (P P (B Zi )Zﬁ(k) + Dhjaty P (BT Ziaw) Zia) } _
iy Yi(Th) (pk] (k) €XP (ﬂ ) + DR ja(r) €XP (B Zj2(k)))

Complete likelihood with unobserved variables

Let {xy,...,@,,} be the set of possible values of Z; and 8 = {Ay,B8"}. If Z; were
observed, we could write the following likelihood, based on the observations {T;, d;, Z;},i =

1,...,nA:

na
0) == H f(T,&,Z) (ﬂ7 5i7 Zi? 0) .

i=1
As in the usual Cox model, this likelihood does not have a maximum in Ay so we need
to redefine a set of parameters. Let be the set of distinct event times [ = {#;,%5,...,1p}
where, D = >4 §; with D < ny4. The continuous cumulative function Ay(t) can be
approximated by a step function with jumps at the observed uncensored event times [11].
Let us define the jump size of the step function at the different event times 4 by Ao{t4}.

With these notations, the step function at time ¢ is defined as :
D ~
> Ao{fd}]l{gdgt}- (4.15)
d=1

So, we redefine the set of parameters as 8 = {Ag{t;},..., Ao{ip}, B}

Here, Z; is not observed. According to Fisher’s identity, the maximum likelihood estimator

0,,

satisfy :

~

) .
Ezirs | 5108 L(0) lo_g, |(1::0),1 < i < na,6,,| = 0. (4.16)
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We have :

-~

Ezirs (log L(O) | (T3,6:),1 <i < nA,OnA)

= HZA]EZW,& (log (f(T,(S,Z) (13, 04, Z;, 9)) | T3, 6, én,q) ;

i=1
nA Np ~
= Z Z lOg (f(T,5,Z) (T;, (Si, Zj, 9)) P (Z,L =y ‘ T%, (Si, BnA) s (417)
i=1j=1
where
log (f(T,é,Z) (T3, bi, x, 9)) = log {f(T,6|Z) (T3, 6; | ,0) P (Z; = wj)]
and

P (Z‘ =, | T,,0;6, ) __fwas (Ti’di | wj’é”f‘) P(Z; = x;)
i = L5 | 1,00, Uny ) = SrEy fir.52) (Ti,&- | wk,énA) P(Z — mk)

Since C' is non-informative of the survival parameter and independent of 7', the likelihood

of the data (7}, d;) knowing the observation x; is given by :

f(T,5|Z) (Tiy&' | wjye) = (fT(Tz | wj’a)SC(Ti))&i(ST(ﬂ- | wj,e)fC(Ti))l*‘Si’
o fr(T; | ®5,0)"S5(T; | 2;,0)' ",

where Sz(T; | x;,0) = exp (—AO(Ti)exp(Bij)) and f7(T; | =;,0) = M(T; |
2,,0)S:(T; | ;,6).

The EM algorithm consists of maximizing (4.17) and alternates between two steps : the
expectation and maximization steps. Let (00T = {AV{E}, ..., AV {Ep Y, (B™) T} is ob-
tained in the r-th iteration of the EM algorithm.

Expectation step. The expectation step consists on calculating the value 7r2-7j(0(”)),

equals to :

m (07) = P(Zi=;|T:,0,0")
iy [exp (80" ))|" exp (~A (1) exp(87) )
Sy p [exp (B0 )] exp (A5 (1) exp(B0) ) )

Y
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with
|D|

AT = X2 AT} ey
d=1

Maximisation step. The maximisation step consists of calculating 8"+, The baseline

hazard Agﬂ){fd} is expressed as, Vd =1,...,| D |,
(r+1) (1 1
Ay {ta} = (4.18)

SRy 0 me(00)) exp(B() " a) 1 {ta<Ti}

and B+ can be obtained by solving the following estimating equation :

24 25 Sl Y08 Lyr<n }Wk,é(g(r)) exp (B xy) x
H(IB) = Z(Sz (Z Wi,j(e(r))xj - na np : ( ) =0. (419)
j=1

i=1 k=1 240=1 1{Ti§Tk}7Tk,€(0(r)) eXP(BTﬂ%)

First simulations. This last approach, based on the maximization of the complete likeli-

hood, seems to correct the bias present in the three other approaches. These developed
techniques are more appropriate for applications to health data from the SNDS where the

linkage process is known.

4.5.2 Other modelling

I will continue this work in collaboration with researchers at the institute IRSET. The
follow-ups of the different cohorts introduced in section 3.4.2 become a huge challenge
when children become older, and attrition may prevent from analysing long-term health
effects (cardio-metabolic health, as an example) of early exposures that were collected at
inclusion in the cohorts. The linkage of these cohorts with the SDNS may be a way to
follow the health trajectories of the children without contacting them. The matching with
the SNDS may also allow collecting health data that were not asked about in the cohort
questionnaires and studying them as health outcomes or confounders in other association
studies. We may also introduce matching errors in other survival models than the Cox

model.

In our previous work, we considered the situation where the explanatory variables are re-
ported in the SNDS while the individuals’ lifetimes are reported in the cohort in which we

wish to conduct survival analysis. However, in this application, the individuals’ lifetimes
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may be reported in the SNDS and the explanatory variables in the cohort (see table 4.1).
So, methods need to be developed in this context. We may also propose a joint model in
which the estimation of matching probabilities and Cox model parameters are performed
simultaneously. We may also account for matching errors in survival models other than

the Cox model. In the long term, we will develop a package to make our methods accessible.

SNDS

Matching variables Survival variables Cohort
NIR | Postal code | Echodoppler date | Cancer | Duration | AVC Matching variables

a 20001 17/05/2013 0 7 0 NIR | Postal code | Echodoppler date | Cancer | Exposure
as 29002 17/05/2013 0 9 1 by 29001 12/03/2014 1 No

ag 29003 19/11/2013 0 10 1 by 29002 17/05/2013 0

ay 29004 01/03/2014 0 12 0 . : No

. ' . . . by, 29010 6/09/2016 1 No
A 29010 12/01/2015 0 6 1

TABLE 4.1 — Analysis of linked data. explanatory variables are observed in the SNDS and
survival variables are observed in the database where we wish to perform the analyses.
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CHAPITRE 5

SOME CONTRIBUTIONS FOR MEDICAL
DATA ANALYSIS

5.1 Causal analysis

Motivations :

e In observational cohort studies, confounding may occur when the distribution of
baseline covariates differs between treated and control subjects.

e The propensity score is one of the methods that helps in reducing or minimizing
this confounding to get valid inferences on treatment effects. The propensity score
is generalized into a propensity function for quantitative exposures which is known
as the generalized propensity score.

e Considering this type of exposure variable, one may be interested in estimating
the dose-response function (treatment effect). In this case, no valid closed-form
variance of the dose-response function estimator has been proposed.

Contributions of the Chapter [VG1] :

e Developing and evaluating closed-form variance estimators for stratified and weigh-

ted treatment effect estimators using the influence function linearization technique.
Collaborations :
e David Hajage (APHP, Paris) and Guillaume Chauvet (ENSAI, Rennes)

5.1.1 Introduction

Problem and objective

Problem. In observational cohort studies, confounding may occur when the distribution of
baseline covariates differs between treated and control subjects (see figure 5.1). Propensity

score (PS) methods help in reducing or minimizing this confounding and are widely used
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b
Exposure

l

Y

F1GURE 5.1 — Directed acyclic graph. 7, ... Zx are the covariates and Y is the variable
of interest.

in observational medical studies to assess the marginal effects of treatment or exposure
on an outcome variable. The PS is the probability of receiving treatment and is first es-
timated, typically through logistic regression on the available covariates. The PS is then
used to define weights for treated and untreated individuals (PS weighting methods) and
allows for estimating both the average treatment effect on the overall population (ATE)
and the average treatment effect on the treated population (ATT). In the case of two
treatment groups, prior research [55] has shown that the variance of the ATE and ATT
is accurately estimated only when the variance estimator considers that the propensity
score is not known but rather estimated from the available data in a preliminary analysis
stage. In many studies, the exposure of interest is continuous rather than binary. For
example, we may not only know whether an individual is a smoker or not, but also the
pack-years of cigarettes smoked, or the duration of smoking. Another example is the body
mass index, which may be more informative as a continuous variable than if reduced to
a dummy variable indicating obesity [123, 5]. The Generalized Propensity Score (GPS)
is an extension of the propensity score, historically developed for binary exposures, to be

used with quantitative or continuous exposures.

Objective. When dealing with this type of exposure variable, one might be interested in
estimating the dose-response function (DRF) and estimating the variance of this estima-

tor.
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The propensity score has been generalized into a propensity function for quantitative
exposures which is known as the generalized propensity score (GPS) [61, 64, 9, 50, 123,
5]. Similarly to the binary case, different propensity score methods have been proposed
to estimate the treatment effects on outcomes using the GPS : covariate adjustment, [5]
stratification [123] and inverse probability of treatment weighting (IPTW) [123, 5].

In the case of binary exposure, several authors have proposed valid closed-form variance
estimators adapted to each treatment effect estimators : adjustment,[125] stratification,
[114] matching, [1] and weighting [82, 81, 54]. Note that all these estimators take into
account the fact that the theoretical propensity score value of an individual is unknown,
and is estimated from the data in the first stage of analysis. However, variance estimation

for treatment effects estimated using the GPS framework has received little attention.

5.1.2 Treatment effect estimator using the generalized propen-

sity score

Notations and assumptions

Let T denote the level of a quantitative exposure which is a continuous variable, and
Z a set of K baseline measured covariates. Let Y (t), t € ¥, denote a set of potential
outcomes which is assumed to exist under Rubin’s framework for causal inference. More
precisely, we assume that 7" is a continuous exposure (i.e., ¥ is a subset of R) and that Y;()
is the outcome that would be observed for subject ¢ if he/she received (maybe contrary
to the reality) the level of exposure T" = t¢. In practice, we only observe one level of
exposure for each subject ¢ and the corresponding outcome. The observed data consists
of (Z;,T;,Y;) for subjects i = 1,...,n. We are interested in estimating the dose-response

function

pt) = EY(t)), (5.1)

which corresponds to the average response if all subjects were exposed to the level T' = ¢.
In randomized studies, it can be assumed that Y'(¢) is independent of T', which is denoted
as Y (t) L T, Vte V. In this work, we only assume that Y'(¢) is independent of 7" given
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Z, which is known as the weak unconfoundedness assumption and denoted as
Y(t) LT|Z, VteU. (5.2)

This assumption means that any association between the actual exposure and the po-
tential outcomes is explained by a set of baseline covariates Z [61, 123]. Note that this

assumption cannot be checked from the data.

Let us denote by
r(t]z) = frz(t|z), (5.3)

the conditional density of exposure variable T' given the covariates, which is called the

generalized propensity score (GPS) [61]. We make the positivity assumption, namely
r(t]z)>0 forany t€ V¥ and for any z. (5.4)

This means that any level of exposure T = t is possible for any subject, whatever his/her
baseline characteristics. A violation of this assumption may lead to biased estimators, or
estimators with a large variability [86]. Note that this assumption may and should be
checked from the data.

We focus on two approaches for the estimation of the dose-response function : inverse
probability of treatment weighting, and stratification. Both approaches are presented in
Zhang et al.,[123] and are briefly described in Sections 5.1.2 and 5.1.2.

Weighted treatment effect estimator

The first estimator is obtained by fitting a generalized linear regression model between
the dose-response function and the exposure, used as the sole dependent variable. We

considered a generalized linear model for the dose-response function, namely :

g} = Bo+ 6 T, (5.5)
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where ¢ is the link function. The estimator 8 = (Bo, Bl)T is obtained as the solution of

the estimating equation

n

3/% B
U = Y — W
(B) éimaxw{ i}

with p; = p(7;) and the weights w; that we use are presented thereafter. Focusing on the

linear case (link function g(x) = z), our model is

wT) = Bo+p T, (5.6)

where [ is the average response observed in the case of null exposure (7" = 0), and 3,
is the average response change if the level of exposure is increased by one unit. Other
dose-response functions (e.g. in case of non-linear relationship) and/or other link func-
tions may be better suited for other types of outcome (e.g., a binomial link function for

a binary outcome), and may therefore be alternatively used.

The parameter 8 = (8, 31)" is estimated by weighted least squares, which leads to

o~

n -1 n
ﬁw = (B’Lv,Oan,l)—r = (Z @szTz—r> (Z QD%iE) (57)
i=1

=1

where T; = (1,T;)".This leads to the first estimator

ﬂw(t) = Bw,O + Bw,l t (58)

for the dose-response function.

The weights used in equation (5.7) are the estimations of the theoretical Generalized

Propensity Score (GPS) weights, defined as

W (Tily)

T2 (59)

wi(y) =

where 7(t|z,7) is the conditional density of the exposure variable defined in (5.3), and
where W(-|7y) is a stabilization factor. As is currently done in the literature, we use

W (t|y) := fr(t|y) the marginal density of the exposure variable. Note that the weights
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depend on some unknown vector of parameters <, which needs to be estimated.

We suppose that T; follows a normal distribution, both conditionally on Z; and non

conditionally. We may therefore write

fr(tly) = ! exp{—i(ﬂ—w)z}, (5.10)

2102, 207

1 1
r(tlz,y) = oro? exp {_M (

T, — aTZ,->2}, (5.11)

with Z = (1,Z]) and v = (up,0%,a',0%)". The parameters pp and 02 in equation
(5.10) are estimated by

1 & o \9
NI oy ) (512

1 n
%% - Z and 07 no1

=1

By fitting a linear regression model between the exposure variable and the covariates,

namely

T, = Z' a+n, (5.13)

the parameters o and o2 in equation (5.11) are estimated by

n -1 n
a = (Z Z T) (Z ZT) (5.14)
i=1 i=1
1 " ~
~92 ~T 2
S —— ) AR
? n—K-—1 ;( )
This leads to the estimator 4 = (fir, 52, a&',52)". By plugging this estimator in (5.9),
we obtain the estimated weights w; := w;(7) used in equation (5.7). The model (5.13) is
called the propensity model.

Stratified treatment effect estimator

The weighted estimator of the dose-response function considered in equation (5.8) of
Section 5.1.2 proceeds through a linear regression on the whole sample, using weights to

adjust for possible imbalance in the covariates.
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An alternative approach consists in partitioning the sample into L strata, in such a way
that the units inside a given stratum are somewhat similar with respect to the covariates.
This may be done by fitting the propensity model in (5.13), ordering the units in the

sample with respect to the prediction Z;'@, and using the quantiles as cut-off points [123].

Inside any stratum ¢ = 1,..., L, we fit the regression model
Y(T) = Bro+Bea T +e, (5.15)

and by estimating the parameter 8y = (8,0, ,1)" by ordinary least squares, we obtain
Be = (Bro,Bea)" (Z TTT) (Z TzYz) , (5.16)
SNy 1€Sy

with Sy the subset of sampled units that belong to the stratum ¢. The stratified estimator
of the parameter 8 in (5.6) is obtained by pooling these L estimators, which leads to

L

~ ~ 5 N

IBS,t = (ﬁs,t,Oaﬁs,t,l Z; (517)
(=1

with n, the number of sampled units in the stratum S,. Note that if the quantiles are
used as cut-off points, we have (up to rounding) n, = n/L, and stt is the simple mean of
the estimators Bg, ¢(=1,...,L.

This leads to the second estimator

ﬁs,t(t) = Bs,t,O + Bs,t,l t (518)

for the dose-response function. Again, ordinary least squares may be replaced by a gene-

ralized linear model and appropriate link function to fit other types of outcomes.

5.1.3 Closed form variance estimators

Our objective was to develop closed-form variance estimators for the estimators of the
dose-response function presented in equations (5.8) and (5.18). Without loss of genera-

lity, we focus on variance estimation for the estimated coefficients of regression 3,, and ;.
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We follow the influence function linearization technique developed by Deville [40] see also
Hajage et al. [54] For an estimator B , this technique consists in finding a so-called estima-
ted linearized variable I, summarizing the variability in the estimation of the parameter.
Ideally, the linearized variable should account for all the estimation steps which lead to

the estimator B .

The proposed variance estimator for the weighted estimator Bw presented in Section 5.1.2
is given in Section 5.1.3. The proposed variance estimator for the stratified estimator BS,t

presented in Section 5.1.2 is given in Section 5.1.3.

Weighted treatment effect estimator

The variance estimator for Bw is obtained by observing that the coefficient of regression is
estimated in a two-step process, involving two estimating equations. First, the unknown
parameter v used to compute the weights is obtained by solving the system of estimating

equations

Fi(y) = 0, (5.19)

1

1 n
Fn(7) = n -

where

Ti — pr
(T; = pr)? = 207
Fi(vy) = T . 5.20
<t (T, — ZT o) Z, (5.20)

(Tz . ZiTa)Q . nffl(—laQ

Then, the estimator Bw is obtained as the solution of the estimating equation

Hy3.8) = - S wiA)Hi(B) = 0 with H,(8)=T,(Y, —T78).  (5.21)

n.—

After some algebra, this leads to the following linearized variable for Bw ;
L, = A7 {wz<’7)Hz<B) + Eéile(’?)} ) (5.22)
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with
N 1. -
A = *Zwi(’)/)jﬂ—;’
ni:1
B = —ZHZ B)\Vuw; ()", (5.23)
n
1 0 01 x 0
~ 0 n-1 0 0
C - " 1 nLI(N 7T )
OKl OK,I n ZZ’:1 ZZZ2 OK,l
0 0 0 n—K-1

n

where V is the differential operator and where 0, , stands for the null matrix with e rows

and ¢ columns.

The resulting variance estimator is

SR 1 noo ' 1
Vlin(ﬂw) = m z:l(ll’i — Il)(Il,i — Il)T Wlth Il = E 7;2::1]1,2" (524)

1=

Stratified treatment effect estimator

Inside each stratum ¢ = 1,..., L, the intermediary estimators Bg are estimated by

solving the estimating equations

(By) = fZ (Y:, T, Be) = (5.25)

ZES[

with

(5.26)

DYV, T:B)) = (Yi‘mﬁ )

T,(Y: — T," By)

After some algebra, the linearized variable of Bg is

s (/j\'?’T _m\ﬁ,T 1 1’;(}/; _ ETBZ) )

107



Some contributions

where

1

mer = Z T; and Gjp= S (Ti = er)”. (5.28)
¢ ies, ne—1 =
This leads to the pooled variance estimator
A~ ~ L —
V(Bst) = > ——— Z (Ini — Tog) (Togs — Iog) T, (5.29)

ng(ng —-1) n2

with ]_273 = — Z 127(71‘.

1€Sy

5.1.4 Conclusion

Proposed method. In this work, we have proposed closed-form variance estimators for the

estimators of the effect of continuous exposure on continuous outcome variables, using the
influence function linearization technique. The DRF functions were estimated by weigh-

ting the inverse of the GPS or using stratification.

Simulation results. Despite the use of stabilized weights, the variability of the weigh-

ted estimator of the DRF was particularly high, and none of the variance estimators (a
bootstrap-based estimator, a closed-form estimator especially developed to take into ac-
count the estimation step of the GPS, and a sandwich estimator) were able to adequately
capture this variability, resulting in coverages below the nominal value, particularly when
the proportion of the variation in the quantitative exposure explained by the covariates
was large. The stratified estimator was more stable, and variance estimators (a bootstrap-
based estimator, a pooled linearized estimator, and a pooled model-based estimator) were
more efficient at capturing the empirical variability of the parameters of the DRF. The
pooled variance estimators tended to overestimate the variance, whereas the bootstrap
estimator, which intrinsically takes into account the estimation step of the GPS, resulted

in correct variance estimations and coverage rates.
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5.2 S-estimation in linear models with structured co-

variance matrices

Motivations :
e Linear mixed models are widely used and provide an approach for analyzing corre-
lated responses, such as longitudinal data, growth data, or repeated measurements.
e To be resistant against outliers, S-estimators have been investigated.
Contributions of the Chapter [VG12] :
e Providing a unified approach to S-estimation in balanced linear models with struc-
tured covariance matrices
e Providing sufficient conditions for the existence of S-functionals and S-estimators,
establish their asymptotic properties, such as consistency and asymptotic norma-
lity, and derive their robustness properties in terms of breakdown point and in-
fluence function.
Collaborations :
o Anne Ruiz-Gazen (Toulouse school of economics, Toulouse) and Rik Lopuhad (Delft
University of Technology)

Perspectives :

e S-estimation in non-balanced linear mixed models

5.2.1 Introduction

Problem and objective

Problem. Linear mixed-effects models are widely used for the analysis of correlated res-
ponses, such as longitudinal data, growth data, or repeated measurements. However, they

are sensitive to extreme and/or outlier values.

Objective. Therefore, it can be valuable to propose robust estimators for this type of mo-

del.

For the sake of compactness I will only introduce the main definitions and models in this
manuscript. All the detailed properties, proofs, or examples can be found in the dedicated
paper [VG12].
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In linear models, each subject ¢, ¢ = 1,...,n, is observed at k; occasions, and the

vector of responses y; is assumed to arise from the model
yi = XiB + u,

where X; is the design matrix for the ¢th subject and u; is a vector whose covariance
matrix can be used to model the correlation between the responses. One possibility is the
linear mixed effects model, in which the random effects together with the measurement
error yield a specific covariance structure depending on a vector @ consisting of some unk-
nown covariance parameters. Other covariance structures may arise, for example, if the
u; are the outcome of a time series, see e.g., [67] or [49], for different possible covariance

structures.

Maximum likelihood estimation of 8 and 6 has been studied, e.g., in [57, 74], see also [49,
36]. To be resistant against outliers, robust methods have been investigated for linear
mixed effects models, e.g., in [92, 25, 24, 59, 2, 18]. This mostly concerns S-estimators,
originally introduced in the multiple regression context by Rousseeuw and Yohai [98]
and extended to multivariate location and scatter in [33, 79|, to multivariate regression
in [108], and to linear mixed effects models in [25, 59, 18]. S-estimators are well known
smooth versions of the minimum volume ellipsoid estimator [97] that are highly resistant
against outliers. As such, S-estimators have gained popularity as robust estimators, but
they may also serve as initial estimators to further improve efficiency. However, the theory
about these estimators is far from complete, even in balanced models where the number

of observed responses is the same for all subjects.

5.2.2 Balanced models with structured covariances

We consider independent observations (y1, X1), ..., (Yn, X»), for which we assume the
following model
Yi :Xz'/B—'_ui; 1= 1,...,7’L, (530)

where y; € R* contains repeated measurements for the i-th subject, 8 € R? is an unknown
parameter vector, X; € R¥*? is a known design matrix, and u; € R* are unobservable

independent mean zero random vectors with covariance matrix V. € PDS(k), the class
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of positive definite symmetric k£ x k& matrices. The model is balanced in the sense that
all y; have the same dimension. Furthermore, we consider a structured covariance matrix,
that is, the matrix V.= V(0) is a known function of unknown covariance parameters
combined in a vector @ € R'. Table 5.1 refers to different structured covariance matrices.

An important case of interest is the (balanced) linear mixed effects model
yi=XiB+Zyvi+e, i=1,...,n

This model arises from uw; = ZI'; + €, for i = 1,...,n, where Z € R¥*9 is known
and I'; € RY and €; € R* are independent mean zero random variables, with unknown
covariance matrices G and R, respectively. In this case V(0) = ZGZ' + R and 0 =
(vech(G)T, vech(R)T)T, where

vech(A) = (aljl, e, Qp1,029, - ,ang) (531)

is the unique k(k + 1)/2-vector that stacks the columns of the lower triangle elements
of a symmetric matrix A. In full generality, the model is usually overparametrized and
one may run into identifiability problems. A more feasible example is obtained by taking
R=01,,Z=1Z, - Z,)and T; = (yi1...,7%,)", where the Z;’s are known k x g; design
matrices and the v; ; € R% are independent mean zero random variables with covariance
matrix o3I, , for j =1,...,7. This leads to

Yi :Xi/B—i—ZZj/Yi,j'}_eia 1= ]_,...,TL, (532)

j=1

with V(0) = X7_, 07Z;Z] + 031}, and 0 = (03, 07,...,07).

In this work, we assume that the parameter @ is identifiable in the sense that,

This may not be true in general for the linear mixed effects model. For linear mixed effects
models in (5.32), identifiability of @ = (o3, 0%,...,02) holds for particular choices of the

design matrices Z, ..., 7Z,.
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TABLE 5.1 — Structured covariances.

Structure [ Description
Independent observations 1 V = 0%l
Compound symmetry 2 V = o111 + o2,
Linear mixed effects lglg+1)+1  V=ZGZ" + o4,
Z known matrix
Factor analytic kg—39(g—1)+k V=AAT+T
A =k x g matrix;
U diagonal
First order autoregressive 2 v;; = o?pli=il
Banded, or general autoregressive k Vij = 0i—j|+1
Unstructured %k(k +1) Ui =61,010=0o, ..., 06 =0,

5.2.3 Definitions

We start by representing our observations as points in R* x R* in the following way.
For r =1,...,k, let xI' denote the r-th row of the k x ¢ matrix X, so that x, € R7. We

represent the pair s = (y, X) as an element in R¥ x R defined by s” = (y?,x7T,...,x}).
In this way our observations can be represented as s1, . . ., s,, with s; = (y;, X;) € RF xR,

S-estimator

S-estimators are defined by means of a function p : R — [0,00) that satisfies the

following properties

(R1) p is symmetric around zero with p(0) = 0 and p is continuous at zero;
(R2) There exists a finite constant ¢y > 0, such that p is non-decreasing on [0, ¢y] and

constant on [cy, 00) ; put ag = sup p.
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The S-estimator &, = (B,,0,) is defined as the solution to the following minimization

problem

Hﬂuen det(V(09))

subject to (5.34)
iZP <\/(yl —XiB)'V(O0) (yi — Xzﬂ)) < bo,

where the minimum is taken over all 8 € R? and 6 € R, such that V(6) € PDS(k), with
p satisfying (R1)-(R2).

The S-estimator defined by (5.34) for the setup in (5.30) includes several specific cases
that have been considered in the literature. Copt and Victoria-Feser [25] and Chervoneva
and Vishnyakov [18] consider S-estimators for the parameters in the linear mixed effects
model (5.32).

The constant 0 < by < ag in (5.34) can be chosen in agreement with an assumed underlying
distribution. For the multivariate regression model in [108], it is assumed that y; | X; has

an elliptically contoured density of the form

Fus(y) = det(E)h ((y =) 27 (y — w) (5.35)

with p = X;8 and ¥ = V(0) and h : [0,00) — [0,00). For the linear mixed effects
model in [25], it is assumed that y; | X; has a multivariate normal distribution, which is a
special case of (5.35) with h(t) = (27) %2 exp(—t/2). When the underlying distribution
corresponds to a density of the form (5.35), then a natural choice is by = Eg 1p(]|z]|), where
z has density (5.35) with (u, ¥) = (0,I;). Finally, it should be emphasized that the ratio
bo/ao determines the breakdown point of the S-estimator (see Theorem 6.1 in [VG12]),
as well as its limiting variance (see Corollary 9.2 in [VG12]). By choosing the constant cq

in (R2) one then has to make a trade-off between robustness and efficiency.

Remark 5.1. Clearly, the definition of the S-estimator in (5.34) has great similarities

with the S-estimator for multivariate location and covariance (see [32] and [79]), defined
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as the solution (t,, C,) to the minimization problem

min det(C)

t,C

subject to (5.36)

2 (Vor—oreT =) <m

where the minimum is taken over all t € R¥ and C € PDS(k). Even more so, if all X,
are assumed to be equal to the same design matriz X of full rank, as was done in [25, 24].
However, there is a subtle, but important difference between minimization problems (5.36)
and (5.34). The important difference is that in (5.36) we minimize over all positive definite
symmetric k X k matrices C, whereas in (5.34), we only minimize over positive definite
symmetric k X k matrices V(0), which can arise as the image of the mapping @ — V().

The latter collection is a subset of the other :
{V(6) € PDS(k) : 6 € R'} C PDS(k),

and will typically be a strictly smaller subset. This means that the properties of V(6,)
and C,, are related, but the properties of V(0,,) cannot simply be derived from properties
of C,, not even in the case where all X; are equal to the same X. In fact, this will lead

to limiting covariances that differ from the ones found in [25].

S-functional

The concept of S-functional is needed to investigate the local robustness properties
of the corresponding S-estimator, such as the influence function. Let s = (y,X) have a
probability distribution P on R* x R*. The S-functional £€(P) = (B(P), 8(P)) is defined
as the solution to the following minimization problem :
min det(V(0))
subject to (5.37)

/p <\/(y = XB)TV(0) (y - XB)) dP(y, X) < by,

where the minimum is taken over all 8 € R? and 6 € R, such that V(6) € PDS(k), with
p satisfying (R1)-(R2).
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As a special case, we obtain the S-estimator &, = (f3,,0,) by taking P = P,, the em-
pirical measure corresponding to the observations (y1,X1), ..., (¥Yn, Xn). In view of this
connection, the existence and consistency of solutions of (5.34) will follow from general

results on the existence and the continuity of solutions to (5.37).

5.2.4 Theoretical properties

We established the robustness properties of the S-estimators in terms of breakdown

point and influence function. Let’s recall their definitions.

Breakdown point. Consider a collection of points S, = {s; = (v, X;),i = 1,...,n} C
R* x X. To emphasize the dependence on the collection S,, denote by &,(S,) =
(Bn(Sn), 0,(S,)), the S-estimator, as defined in (5.34). To investigate the global robust-
ness of S-estimators, we compute that finite-sample (replacement) breakdown point. For
a given collection S, the finite-sample breakdown point (see Donoho and Huber [41]) of
a regression S-estimator 3, is defined as the smallest proportion of points from &, that

one needs to replace in order to carry the estimator over all bounds. More precisely,
* . m /
(B8, = min 1™ sup [8,(S,) — Bu(S))l| = oo (5.39)
smsn (0 5,

where the minimum runs over all possible collections S;, that can be obtained from S,

by replacing m points of S, by arbitrary points in R* x X.

For any k x k matrix A, let A\y(A) < -+ < A (A) denote the eigenvalues of A. The
estimator 6,, determines the covariance estimator V,, = V(6,,). For this reason, it seems
natural to let the breakdown point of 8, correspond to the breakdown of a covariance
estimator. We define the finite sample (replacement) breakdown point of the S-estimator

0,, at a collection S,,, as

€ (0,,S,) = min {m :supdist(V(6,(S,))), V(0,.(S))) = oo}, (5.39)

1<m<n n s
with dist(-, -) defined as dist(A, B) = max {|A1(A) — A\ (B)[, [\e(A)™! = A\ (B) Y|}, where
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the minimum runs over all possible collections S/, that can be obtained from §,, by re-
placing m points of S, by arbitrary points in R¥ x X. So the breakdown point of 0, is
the smallest proportion of points from &, that one needs to replace in order to make
the largest eigenvalue of V(6(S]))) arbitrarily large (explosion), or to make the smallest

eigenvalue of V(0(S),)) arbitrarily small (implosion).

Influence function. For 0 < h < 1 and s = (y,X) € R* x R* fixed, define the
perturbed probability measure P, s = (1 —h)P + hds, where ds denotes the Dirac measure
at s € R* x R*. The influence function of the functional &(-) at probability measure P,

is defined as

, 1 —h)P+ hds) — &(P
s, ) gy S0P £ 00 =€(7) 510
if this limit exists. In contrast to the global robustness measured by the breakdown point,
the influence function measures the local robustness. It describes the effect of an infinite-
simal contamination at a single point s on the functional (see Hampel [56]). Good local

robustness is therefore illustrated by a bounded influence function.

We provide sufficient conditions for the existence of S-functionals and S-estimators, es-
tablish their asymptotic properties, such as consistency and asymptotic normality, and
derive their robustness properties in terms of breakdown point and influence function.
These conditions concern the p function, the distribution of the observations, and the co-
variance V(0). All results are obtained for a large class of identifiable covariance structures
and are established under very mild conditions on the distribution of the observations,

which goes far beyond models with elliptically contoured densities.

5.2.5 Conclusion

Proposed method. We proposed a unified approach to S-estimation in balanced linear

mixed-effects models with structured covariance matrices. Our primary focus is on S-
estimators for linear mixed-effects models, but our approach also encompasses S-estimators
in several other standard multivariate models, such as multiple regression, multivariate
regression, and multivariate location and scatter. We illustrate our findings through an

application of data from a clinical trial on the treatment of children exposed to lead.
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5.3 Perspectives

5.3.1 Analysis of longitudinal data with outliers

In our current work, we focus on balanced linear mixed effects models and provide
an overview of robust estimation methods that have been studied and revisited in recent
years, such as the S, the MM, and the tau estimators, and their composite counterparts.
We compare them in different contamination models. In the robust statistical literature,
there exist two contamination models : the Classical (Tukey-Huber) Contamination Mo-
del (CCM) and the Independent Contamination Model (ICM). While CCM (also called
“case-wise" contamination) considers that the contamination is at the level of the subjects
or cases, ICM (also called "cell-wise" contamination) considers the possibility to contami-
nate data sets at the level of the cells. Initially, the robust statistics literature focused on
the CCM context and proposed robust estimators that were able to cope with a propor-
tion of outliers close to 50% without breaking down. However, such estimators may not
be robust in the ICM context, since even a small fraction of contaminated cells may lead
to more than 50% of contaminated cases. We will apply these methods to clinical data in
collaboration with Benoit Lepage (INSERM UMR 1295 CERPOP).

In practice, the number of repeated measurements of the variable of interest may differ
according to each individual. Indeed, some individuals miss visits or drop out of the study
early. In this case, the mixed model is said to be unbalanced. We will therefore propose a

robust estimator in the case of the unbalanced mixed model.

5.3.2 Analysis of functional data

I am interested in functional data modeling within the framework of a real industrial
application, in collaboration with Madison Giacofci and Valérie Monbet (section 5.3.2).
Our project is to propose a PhD topic in 2025 on the modeling of environmental conta-
mination data (spectrometry data) from non-targeted analysis methods in collaboration
with researchers at the institute IRSET. Indeed, spectrometry data can be modeled using

a functional approach (section 5.3.2).

117



Some contributions

Functional data with grouped structures

Objective. Motivated by a real data application for industry, the objective is the prediction
and explanation of a force curve using the geometric characteristics of a rubber joint. The
relationship between the functional responses (force) and the geometric characteristics is

not homogeneous for all rubber joints.

Proposed method. We propose a mixture model of canonical correlation analysis. The

responses observed are functional data that are characterized by explanatory variables.
The infinite-dimension nature of the data is accounted through a functional canonical
correlation analysis. The relationship between functional responses and explanatory va-
riables being not homogeneous for all individuals, we consider a mixture of regression
models. The originality of this work lies in the simultaneous clustering and prediction of
the individual canonical component scores. This is achieved by adopting a probabilistic
approach of the canonical correlation analysis. Estimation of the parameters of the mo-
dels is driven by the EM algorithm where both cluster labels and individual functional

canonical component analysis scores are latent.

Modeling environmental contamination data from non-targeted

analysis methods

Problem. Non-targeted analyses based on the use of liquid chromatography coupled with
high-resolution mass spectrometry (LC-HRMS) offer the promise of globally identifying
and even quantifying pollutants present in biological matrices such as urine, blood, and
hair [12, 31]. The mass spectrometer acts as a detector, measuring the mass-to-charge
ratio (m/z) of ions detected in a sample, as well as the associated abundance. Upstream
liquid chromatography allows the separation of compounds to simplify a complex sample.
This results in three-dimensional data forming peaks (m/z, intensity, retention time). In
a non-targeted approach, we do not focus on predefined specific pollutants but rather on
the entire chemical fingerprint characterized by multiple peaks corresponding to identified
or unidentified molecules. Several challenges remain to be addressed in order to effectively
exploit this massive data : the pollutants of interest are often of low abundance and are
masked by endogenous compounds, making them particularly difficult to detect. Moreo-
ver, not all peaks can be described by the same "mathematical curve" (i.e., Gaussian).

Finally, the techniques used to record these data are specific to each laboratory, and the
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joint analysis of exposure profiles produced by different laboratories remains an unresol-

ved challenge.

Objective. We may deal with two objectives : the first is to relate this curve with a health
event (or a lifetime) to identify the associated peaks and then interpret them in terms of
molecules in a second time trying to annotate them. The second is to identify homoge-

neous exposure profiles.

Project.

Existing Approach. This overall objective is currently addressed in two main steps in
the literature. The first step, a preprocessing phase carried out simultaneously with the
acquisition of the spectra, consists of reducing the entire spectrum to a position/intensity
matrix that summarizes the molecular information of the sample. This matrix is then
used, in a second step, as input for classical learning models, either supervised or un-
supervised, to explain/predict an event or identify individual profiles. Such an approach
has several limitations. First, the preprocessing of these spectra through these methods
involves multiple steps [96]. These different steps depend on numerous parameters that
need to be specified, thereby increasing user-related subjectivity. One of the challenges
is, therefore, to reduce the number of parameters or automate their selection. Moreover,
each step introduces statistical errors that are rarely quantified or considered in existing
methods. It is thus necessary to quantify the uncertainty arising from each step of the

processing as a way to ensure a better evaluation of data quality.

Proposed method. Our project aims to adopt a more global approach to reduce pre-
processing steps and the uncertainty arising from errors propagated through successive
steps [103]. To achieve this, we will propose a functional modeling of the spectrum using
flexible function bases adapted to the characteristics of the acquired spectra. One of the
challenges with spectra is that the peaks observed in LC-HRMS data for different indivi-
duals are not properly aligned ; we will integrate an alignment step into our models based
on optimal transport and the Wasserstein distance [105]. Moreover, pollutants present
in biological samples typically correspond to small peaks whose intensity is close to the
noise level. Our model will thus need to account for this in order to distinguish peaks

associated with real molecules from those corresponding to noise. Additionally, we will
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take into account various sources of variability, such as those due to different laboratory
techniques or group structures, in the final model, using mixed effects. We will also define
a penalty term specifically suited for the selection of curve segments. This modeling will
allow us to identify, without prior assumptions, the pollutants with the most significant

effect on a health event.
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o membre du Comité social d’administration (CSA) et suppléante de la formation spécia-
lisée du CSA en 2023-2024.
e élue membre du conseil scientifique de 'INSA de 2021 a 2024.

« membre du conseil composante de 'IRMAR a I'INSA de 2018 a 2024.
 responsable du séminaire statistique a 'INSA de Rennes (depuis 2017).
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« membre de la cellule communication de la SFDS de 2018 a 2023.
« membre du GDR Statistique et santé de 2019 a 2023.
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v Lien de la page web.
o membre du réseau Thématique Math Bio Santé, créé par 'INSMI (bureau et conseil

scientifique) depuis 2024.

Révisions d’articles.

International Journal of Biostatistics (1 en 2021).

Journal of Biopharmaceutical statistics (1 en 2019).

Journal de la Société Francaise de Statistique (1 en 2022).

International Journal of Statistics in Medical Research (1 en 2023).
BMC Medical Research Methodology (1 en 2024).

Participation a des jurys.

o Examinatrice de la these de Lucas Anzelin. Prédictions du parcours de soins et du développe-
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o maitre de conférences a 'université Jean Jaures a Toulouse en 2022.
o maitre de conférences a 'INSA de Rennes en 2023.
« maitre de conférences a 1’Université Rennes 2 en 2023.
e enseignant chercheur a I’ EHESP en 2023.
o maitre de conférences a 'INSA de Lyon en 2024.

Représentante d’une école d’ingénieurs pour un jury VAE a 'ENSAI en 2019.
Groupes de travail.

« Responsable du groupe de travail 'Biostatistiques' de 'UMR CERPOP de I'Inserm a Tou-
louse en 2016 et 2017.

o Mise en place de deux groupes de travail en collaboration avec 'TEHESP, 1I’Agrocam-
pus et PENSAI dans le cadre de problématiques liées aux données du SNIIRAM (assurance
maladie) en 2018 avec Guillaume Chauvet (ENSAI) et Marie Pierre Etienne (Agrocampus) :

o Chainage de bases de données,

« Données de Survie, Score de Propension (Responsable de ce groupe).

e Membre du groupe de travail "Small area estimation' a Toulouse School of Economics en
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2, en 2023 a 'ENSAI en 2024 a Rennes 1 et en 2025 a 'INSA de Rennes.

o Colloque Francophone International sur I’'Enseignement de la Statistique (CFIES) les 24 et
25 novembre 2022 a 'ENSAI Rennes.

o Journées du GDR statistique et santé les 17 et 18 novembre 2022 a I'INSA de Rennes. Res-
ponsable de I'organisation.

o Conférence "TA et santé" a Nantes du 29 juin au ler juillet 2022. Je faisais partie également
du comité scientifique pour représenter le GDR statistique et santé.

e "School in machine learning and artificial intelligence. Part 2 :Entropies, divergences and
distances and applications in machine learning" du 20 au 24 juin 2022 a Rennes 2. Je faisais
partie également du comité scientifique.

e Séminaire "Méthodes de 'approche causale en épidémiologie” organisé par 'IRSET, TEHESP,
I'INSA, 'TRMAR et I’Université de Rennes 1 du 6 au 8 juillet 2021. Je faisais partie également
du comité scientifique.

o Colloque Jeunes Probabilistes et Statisticiens du 25 au 29 octobre 2021 et du 1 au 6 octobre
2023 a Oléron.

o JSTAR 2019 (Journées de Statistique de Rennes) a 'INSA de Rennes. Je faisais partie égale-
ment du comité scientifique.

o Workshop "Conference on Statistics and Health" a Toulouse les 11 et 12 janvier 2018.

Comités scientifique.

e JSTAR 2024 a Rennes 2.

Projets.

o Allocation d’installation scientifique par Rennes Métropole (10 000 euros) en 2019.

« Projet Exploratoire de Premier Soutien (PEPS) "Jeune chercheuse, jeune chercheur' en 2019
(3500 euros).

o Membre des Partenariats Hubert Curien (PHC) en 2019.

e Membre du projet BIDASA financé dans le cadre des Défis MASTODONS en 2017. Lien de
la page web.

e Membre du projet "Clinical trials advances for better health outcomes" par "The National
Health and Medical Research council (NHMRC) en 2014.

Vulgarisation scientifique.

e Article de vulgarisation de mes travaux de recherche au service de la santé dans la revue
scientifique de 'INSA de Rennes (INSIDE LABS, la recherche a 'INSA Rennes) en 2023.
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 Intervention dans les classes sur la planche de Galton a ’école Jules Isaac (Rennes) le 19 et
26 juin 2023 avec Anne Cuzol (UBS, Vannes) (deux demi-journées) et a ’école Louise Michel

(Rennes) avec Madison Giacofci (une demi-journée).

« Vulgarisation scientifique au collegue Didier Daurat et au lycée Bagatelle a Saint-Gaudens en
février 2022.
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