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1. Introduction

Neurodegenerative dementias are a growing public health concern. For example,
a recent study has estimated the prevalence of Alzheimer’s disease at 115.4
million people in 2050 [20]. There is currently no effective treatment for this
pathology, which makes its prevention a priority. Prevention is feasible due to the
long asymptomatic latent period of the disease. Some studies have shown that
delaying Alzheimer’s disease onset for a few years could substantially reduce the
burden of dementia on society and public health-care systems (see [2, 3]). A small
number of clinical trials have been conducted to assess prevention treatments
for Alzheimer’s disease. Their evaluation criterion was a delayed appearance of
the event “develop dementia”. All these trials were analysed using the logrank
test and concluded that the various treatments do not exhibit a significant effect
(e.g., [4, 14, 16, 17]). However, one common and specific feature of these trials is
that the treatment effect occurs late. The logrank test assumes that the hazard
rates in the treatment and control groups are proportional and thus, it is not
appropriate in this setting. One solution to this issue is to use weighted logrank
tests.

Weighted logrank tests are constructed by plugging a weight function (usu-
ally depending of the sample size n) (Wn(s), s ∈ R+) in the logrank statistic.
The choice of a particular weight is motivated by the kind of deviation to the
null hypothesis (of equality of the survival functions) that we are interested in
detecting. A large amount of literature has been devoted to these tests so far
and numerous weights have been proposed (see [6] and references therein). We
focus here on two weight functions of particular interest:

• the Fleming-Harrington weight for late effects (see [5]) is defined as

W q
n(s) = [1− Ŝn(s)]

q (1)

where q > 0 and Ŝn is the Kaplan-Meier estimator of the survival func-
tion S of the event time under the null hypothesis (thereafter, we refer
the resulting weighted test to as the “Fleming-Harrington test” and we
denote it by FH(q)). Choosing the most appropriate value of q for a given
trial remains a difficult task and an open problem since q is not directly
interpretable in terms of late effects. However in [7], the authors have
shown that the sensitivity of the Fleming-Harrington test to the value of
q is small. The authors also provide some guidelines for using this test in
clinical trials.

• the constant piecewise weight (CPW for short) is defined as

W t∗(t) =

{

0 if t < t∗

1 if t > t∗
(2)

for some t∗. The resulting weighted logrank statistic (subsequently referred
to as the “CPWL statistic” and denoted by CPWL(t∗)) has been studied
in [21]. One appealing feature of (2) is that the parameter t∗ is directly
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interpretable in terms of late effects. In practice, a reasonable value of t∗

should therefore be based on the investigator’s a priori knowledge about
the late effects. However, as will be seen later in this paper, the CPWL
test suffers from being sensitive to the value of t∗.

In this paper, we aim at providing some clear guidelines for choosing the most
appropriate weight for testing late effects in a clinical trial.

We first evaluate the sensitivity of the Fleming-Harrington and CPWL tests
to their respective parameters q and t∗. We conclude that the Fleming-Harrington
test is less sensitive to the value of q than the CPWL test is to the value of t∗.
In view of this result, the Fleming-Harrington weight (1) appears to be more
appealing than the CPW (2). However in practice, it is easier to identify a
reasonable range of values for t∗ than to choose q. By comparing the Fleming-
Harrington and CPWL tests (using arguments from asymptotic efficiency theory
and some numerical comparisons), we are able to elucidate the relationship be-
tween q and t∗. From this, we establish some rules for choosing q from a given
t∗. We finally propose a testing procedure, which consists in: 1) choosing t∗

based on a priori knowledge about the expected late effects, 2) identifying and
using the Fleming-Harrington test FH(q) which matches best (in a sense to be
specified later) with the desired CPWL(t∗) test.

Applying the Fleming-Harrington and the CPWL tests to clinical trials raises
the crucial issue of necessary sample size calculation. Several sample size for-
mulas have been proposed under non-proportional hazards [10, 15, 11, 12, 13].
These formulas are essentially adaptations of the formula for the logrank test.
However, it is desirable to obtain a sample size formula which is specific to both
the tested alternative hypothesis and the optimal statistic used for testing this
hypothesis. Motivated by this idea, we propose a new sample size formula for
the Fleming-Harrington and CPWL tests for late effects.

All these issues arise in the GuidAge study (descibed in [19]) which motivates
our investigations. GuidAge is a 5-years long prospective prevention study in-
volving patients who spontaneously reported memory complaints. The primary
objective was to investigate the effect of a treatment called EGb 761 on the
conversion rate from memory complaints to Alzheimer’s disease. The statistical
analysis design was specified before the beginning of the trial and required the
data to be analysed using the logrank test, which concluded that the treatment
is ineffective. A re-analysis using the Fleming-Harrington test with q = 3 was
conducted after the trial and concluded that the treatment is effective. Moti-
vated by this example, we aim at providing guidelines for conducting the right
analysis of clinical trials involving late effects and for choosing the most relevant
value of the critical parameter q.

The remainder of the paper is organized as follows. In Section 2, we provide
some background on weighted logrank statistics. In particular, we give a brief
review of asymptotic relative efficiency and we recall some important results
about the optimality of the Fleming-Harrington and CPWL tests for late effects
detection. In Section 3, we conduct a simulation study to evaluate the sensitivity
of these tests to their respective parameters q and t∗. In Section 4, we compare
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these tests both theoretically (using arguments of asymptotic efficiency) and
numerically. We also investigate the relationship between q and t∗. Finally, we
obtain a sample size formula for weighted logrank tests and we compare the
sample sizes required by the Fleming-Harrington and CPWL tests. We illustrate
our methodology on the GuidAge study in Section 5. A discussion and some
perspectives conclude the paper.

2. Preliminaries on weighted logrank tests

2.1. Notations, definition and asymptotic relative efficiency

Let T be a non-negative random variable with cumulative distribution function
F , survival function S = 1 − F , hazard function λ and cumulative hazard
function Λ(t) =

∫ t

0 λ(s)ds. T denotes the duration until the occurrence of some
event of interest. In what follows, T is assumed to be right-censored, that is,
we only observe the events that occur before some time C. Let T i and Ci

be the latent survival and censoring times respectively for the i-th individual.
The observations consist of n independent couples (X i, δi)i=1...n, where X i =
min(T i, Ci) and δi = I{T i6Ci}. We assume that T i and Ci are independent
for every i = 1, . . . , n. Let G be the distribution function of the (Ci)i=1,...,n,
τ denote the duration of the study and τ ′ = inft>0{π(t) = 0}, where π(t) =
(1 − F (t)) (1 − G(t)). We assume that τ < τ ′. For every t > 0, we also define
the random variables

Nn(t) =
n
∑

i=1

I{Xi6t,δi=1} and Yn(t) =
n
∑

i=1

I{Xi>t}.

Nn(t) is the number of failures at t and Yn(t) is the number of at-risk subjects
at time t−.

We consider a clinical trial with two arms, where nT patients receive a drug
(or treatment) and nP patients receive a placebo (with n = nP + nT ). In what
follows, all the random variables and related quantities (cumulative distribution
function, survival function, etc) for the treatment (respectively placebo) group
are upper-indexed by T (respectively P ). For example, we note Nn = NP

nP
+NT

nT

and Yn = Y P
nP

+ Y T
nT

.
Consider the following null and alternative hypotheses:

{

H0 : FT = FP = Fθ0 ,

H1 : FT = FθT and FP = FθP .
(3)

To solve this testing problem, one usually relies on the logrank statistic (see [5])
which can be written, at time t, as

LRn(t) =

∫ t

0

(

nP + nT

nPnT

)1/2 Y P
nP

(s)Y T
nT

(s)

Yn(s)

[

dNP
nP

(s)

Y P
nP

(s)
−

dNT
nT

(s)

Y T
nT

(s)

]

.
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This statistic is known to be optimal to test H0 against a proportional hazards
alternative. The proportional hazards assumption states that the ratio of the
hazards in the treatment and placebo groups is constant over time. When early
or late effects are present, this ratio is not constant. In this case, one can extend
the logrank to the so-called weighted logrank statistic, which is defined as

LRWn
(t) =

∫ t

0

Wn(s)

(

nP + nT

nPnT

)1/2 Y P
nP

(s)Y T
nT

(s)

Yn(s)

[

dNP
nP

(s)

Y P
nP

(s)
−

dNT
nT

(s)

Y T
nT

(s)

]

,

where (Wn) is a sequence of adapted, bounded, non-negative and predictable
weighting processes. Assume that the following two conditions hold:

Condition 2.1. As n → ∞, nP /n → 1/2 and nT /n → 1/2.

Condition 2.2. There exists a function w ∈ D (where D is the Skohorod space

of càdlàg functions) such that Wn(s)
a.s.
−−→ w(s) as n → ∞.

Under H0, LRWn
converges weakly to a zero-mean Gaussian process. Under

the general alternativeH1, the asymptotic distribution of LRWn
(t) is degenerate

(see [7] and references therein). As a consequence, the weighted logrank tests are
consistent: their power converges to 1 as n tends to infinity [5, 9]. In this setting,
an appropriate comparison procedure consists in investigating the behaviour of
the tests under a sequence of alternatives that converges to H0 as n tends to
infinity. A relevant choice of the alternatives (θPnP

) and (θTnT
) in (3) is

θPnP
= θ0 + c

(

nT

nP (nP + nT )

)1/2

and θTnT
= θ0 − c

(

nP

nT (nP + nT )

)1/2

(4)

where c ∈ R is a constant (see [5]). This is the idea of asymptotic relative
efficiency (ARE). There are different ways to define the ARE. In the next para-
graph, we briefly review the Pitman ARE (see [18] for a definition and a detailed
exposition). Let

k(s) = w(s)
πP (s)πT (s)

π(s)
. (5)

and assume that the following additional regularity condition holds:

Condition 2.3. The function θ → λθ is differentiable at θ0, with ∂λθ

∂θ |θ=θ0 6= 0.

Then two results (due to [9], see Theorem 2.1 below) on the ARE of weighted
logrank tests can be stated. These results will be crucial for proving our theorems
in Section 4. The first result expresses the ARE of two weighted logrank statistics
as the ratio of their respective asymptotic efficiencies (AE for short). The second
gives the form of the limiting weight of a weighted logrank statistic with maximal
AE. We refer to [9] for the proofs.

Theorem 2.1 ([9]). Let LRW 1
n
and LRW 2

n
be two weighted logrank statistics

satisfying the conditions 2.1, 2.2, 2.3. Consider a sequence of alternatives of the
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form (3), with θPnP
and θTnT

defined by (4). Then the Pitman ARE of LRW 1
n

with respect to LRW 2
n
is given by

ARE(LRW 1
n
,LRW 2

n
) =

AE(LRW 1
n
)

AE(LRW 2
n
)
, (6)

where

AE(LRW j
n
) =

(

∫ τ

0
kj(s)
λ
θ0

(s)
∂λθ

∂θ (s)
∣

∣

θ=θ0 dΛθ0(s)
)2

∫ τ

0
(kj)2(s)

π(s)
πP (s)πT (s)dΛθ0(s)

. (7)

Moreover, the weighted logrank statistic with maximal AE has a limit weight

function w such that k in (5) is given by

k : s → κ
1

λθ0(s)

∂λθ

∂θ

∣

∣

∣

∣

θ=θ0

(s)

(

πP (s)πT (s)

π(s)

)

,

where κ is a constant.

2.2. Optimality of the Fleming-Harrington and CPWL statistics

In logrank testing, a useful strategy is to consider the particular pattern of “shift
assumptions up to a change of time” for the alternative hypothesis (see [9]). This
can be defined through the following family of distribution functions:

Fθ(t) = Ψ(g(t) + θ), θ ∈ Θ, (8)

where g : [0,∞[→]−∞, u+[ (with u+ ∈ R̄) is a differentiable non-decreasing
function and Ψ is a continuous cumulative distribution function with positive
density Ψ′ and an almost everywhere continuous second derivative Ψ′′ (see [7, 6]
for more details). Under the shift alternative and a relevant choice for g, The-
orem 2.1 allows to express the patterns of the hazards in the treatment and
placebo groups, for which the Fleming-Harrington and CPWL tests are opti-
mal. These patterns can be given in terms of the shift ∆ = θP −θT (see Theorem
2.2 for the Fleming-Harrington and Theorem 2.3 for CPWL).

Theorem 2.2 ([7]). Given a shift ∆, the Fleming-Harrington test with q > 0
has maximum AE to test

{

H0 : λT = λP ,

H1 : λT = λP Γq(.,∆),
(9)

where for any t ∈ R+,

Γq(t,∆) =
Lq((Lq)−1(Lq(SP (t)) + ∆))

Lq(SP (t))
,
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and Lq]0, 1[→ R− is a one-to-one map defined as the primitive of the function

defined from ]0, 1[ to R− by:

x →
1

xLq(x)
with Lq(x) = −Binc(x − 1, q + 1, p),

and Binc is the incomplete beta function Binc(x, a, b) =
∫ x

0
sa−1(1− s)b−1ds.

Theorem 2.3 ([21]). Given a shift ∆ = θP − θT , the CPWL statistic with

0 6 t∗ 6 τ has maximum efficiency to test
{

H0 : λT = λP ,

H1 : λT = λP (1−∆I]t∗,τ [).
(10)

Theorems 2.2 and 2.3 are used to construct the data generating processes in
the simulation study below. In these simulations, we investigate the sensitivity
of the Fleming-Harrington and CPWL statistics to their parameters q and t∗

respectively.

Remark 2.1. In fact, the CPWL depends on both t∗ and τ . This problem can
be overcome by considering t∗

τ . The parameter becomes dimension-free which
makes the weight independent of the trial duration. Thereafter, in order to avoid
any ambiguity, we consider τ = 1.

3. Sensitivity of the Fleming-Harrington and CPWL statistics

The simulation scenarios are described in Section 3.1 (for the Fleming-Harrington
test) and Section 3.2 (for the CPWL test). The results are discussed in Sec-
tion 3.3.

3.1. Fleming-Harrington test: Sensitivity to q

Data generating process (DGP1). We simulate data according to a gen-
erating process under which the Fleming-Harrington test with parameter qS is
optimal (thereafter, qS will stand for “the q-value used for simulating the data”).
Given some τ > 0, qS > 0 and c = SP (τ), a rate r is defined as

r =
ST (τ) − SP (τ)

1− SP (τ)
. (11)

The data in the placebo group are simulated from an exponential distribution
with parameter a > 0, where a is fixed from the desired proportion of censored
data:

a = −
ln(SP (τ))

τ
. (12)

Based on Theorem 2.2, the data in the treatment group are simulated from the
hazard function

λT (t) = a
Lq((Lq)−1(Lq(e−at) + ∆(q)))

Lq(e−at)
(13)



848 V. Garès et al.

Fig 1. Hazard and survival functions for the DGP1. The curves for q = 0, 1, 2, 3, 4 correspond
to the hazard and survival functions in the treatment group under optimality of the Fleming-
Harrington test.

with q = qS and ∆(q) given by

∆(q) = θT − θP = Lq(r(1 − SP (τ)) + SP (τ)) − Lq(SP (τ)).

We consider well-balanced placebo and treatment groups that is, nP = nT = n
2 .

A sample simulated from this data generating process is denoted by S(qS , n, r, c).

To get an insight into the patterns of λT and λP for which the Fleming-
Harrington test is optimal, we plot the hazard functions (12) and (13) and the
corresponding survival functions (see Figure 1). On these graphs, τ = 1 year,
SP (τ) = 0.8, r = 0.2 and q varies over {0, 1, 2, 3, 4}. As expected, we note that
the larger q is, the later the treatment effect can be detected.

Simulation design. We simulate N = 2000 samples S(qS , n, r, c) for each
qS ∈ {0, 1, 2, 3, 4, 5} (and τ = 1). The logrank test and the Fleming-Harrington
tests with q = qT (with qT successively equal to 1, 2, 3, 4) are applied to each of
the N samples and the empirical powers of all these tests are obtained (in what
follows, qT will stand for “the q-value used for testing the data”, as opposed to
the value qS used to simulate them).

Similarly, empirical levels are obtained by simulating N = 2000 samples
under the hypothesisH0 of equality of the survival distributions of the treatment
and placebo.

We considered several values for n (100, 500, 1000, 2000), c (0.2, 0.5, 0.8), and
r (0.1, 0.2, 0.3). Due to space limitations, a part of the results only is provided
in the upper part of Table 1 (empirical level) and in Table 3 (empirical powers,
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Table 1

Empirical level of the Fleming-Harrington (FH) tests (respectively CPWL tests) for various
values of qT (respectively t∗

T
)

FH(q)
n c Logrank qT = 1 qT = 2 qT = 3 qT = 4
100 0.2 0.052 0.048 0.051 0.049 0.053

0.5 0.054 0.047 0.047 0.045 0.043
0.8 0.046 0.045 0.046 0.048 0.047

500 0.2 0.051 0.053 0.050 0.050 0.047
0.5 0.049 0.052 0.050 0.049 0.040
0.8 0.046 0.053 0.054 0.052 0.046

1000 0.2 0.049 0.047 0.052 0.054 0.058
0.5 0.048 0.055 0.047 0.046 0.044
0.8 0.046 0.048 0.049 0.050 0.050

2000 0.2 0.051 0.047 0.049 0.049 0.051
0.5 0.050 0.047 0.045 0.048 0.045
0.8 0.049 0.049 0.053 0.052 0.052

CPWL(t∗)
n c t∗

T
= 0.2 t∗

T
= 0.4 t∗

T
= 0.6 t∗

T
= 0.8

100 0.2 0.045 0.052 0.047 0.048
0.5 0.053 0.047 0.049 0.044
0.8 0.059 0.057 0.054 0.021

500 0.2 0.041 0.050 0.055 0.047
0.5 0.044 0.046 0.047 0.047
0.8 0.052 0.056 0.058 0.052

1000 0.2 0.055 0.054 0.054 0.051
0.5 0.052 0.049 0.044 0.056
0.8 0.051 0.050 0.049 0.050

2000 0.2 0.054 0.045 0.046 0.047
0.5 0.053 0.051 0.048 0.049
0.8 0.048 0.048 0.059 0.054

n = 2000, c = 0.8, r = 0.2). Additional results can be found in a supplementary
document [8] available at the following address: http://www.math.univ-toulouse.
fr/˜vgares/Supp/CPWFHsupp.pdf.

3.2. CPWL test: Sensitivity to t∗

Data generating process (DGP2). We simulate data according to a gen-
erating process under which the CPWL(t∗S) test is optimal (in what follows,
t∗S will stand for “the value of t∗ used for simulating the data”). Let τ > 0,
0 6 t∗S 6 τ , c = SP (τ) and r be defined as in (11). The data in the placebo
group are simulated from an exponential distribution with parameter a given by
(12). The data in the treatment group are simulated from the hazard function

λT (t) = a(1 −∆(t∗)I{t>t∗}) (14)

where t∗ = t∗S and

∆(t∗) =
1

a
ln

(

ST (τ)

SP (τ)

)

1

τ − t∗
.

http://www.math.univ-toulouse.fr/~vgares/Supp/CPWFHsupp.pdf
http://www.math.univ-toulouse.fr/~vgares/Supp/CPWFHsupp.pdf
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Fig 2. Hazard and survival functions for the DGP2. The curves for t∗ = 0.2, 0.4, 0.6, 0.8
correspond to the hazard and survival functions in the treatment group under optimality of
the CPWL test.

We consider well-balanced placebo and treatment groups. A sample simulated
from this data generating process is denoted by S(t∗S , n, r, c). Figure 2 plots the
hazard and survival functions for this DGP when τ = 1 year, SP (τ) = 0.8,
r = 0.2 and t∗ varies over {0, 1, 2, 3, 4}. As expected again, we note that the
larger t∗ is, the later the treatment effect can be detected.

Simulation design. We simulate N = 2000 samples S(t∗S , n, r, c), with t∗S
ranging from 0 to 0.6 by 0.2 (and τ = 1). The logrank test and the CPWL tests
with t∗ = t∗T (with t∗T ranging from 0.2 to 0.8 by 0.2) are applied to each of
the N samples, and their empirical powers are calculated (in the sequel, t∗T will
stand for “the value of t∗ used for testing the data”, as opposed to the value t∗S
used for the simulations). Similarly, empirical levels are obtained by simulating
N = 2000 samples under H0. We considered the same values of n, r, and c as in
the DGP1. The results for the empirical levels (respectively empirical powers)
are given in the lower part of Table 1 (respectively in Table 3). Additional results
are also provided in the web-based supplementary document [8].

3.3. Results

From Table 1, the Fleming-Harrington and CPWL tests appear to respect the
nominal level. From Table 3 and the supplementary document [8], the power
of both tests increases with n and r and decreases when the censoring in-
creases. In each scenario, we note that the Fleming-Harrington test (respectively
the CPWL test) has maximal power when qT (respectively t∗T ) is taken equal
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to qS (respectively t∗S). We also observe that the empirical power of Fleming-
Harrington test only slightly varies when qT varies, which means that the sensi-
tivity of the Fleming-Harrington test to the value of qT is very small. Therefore,
misspecifying qT will only have a limited impact on the result of the test. This
is a nice feature of the Fleming-Harrington test in view of its application in
clinical trials. On the contrary, the CPWL test appears to be sensitive to the
value of t∗. Its power decreases markedly when the true value t∗S is misspecified.

4. A comparison of the CPWL and Fleming-Harrington tests

In this section, we compare the CPWL and Fleming-Harrington tests. We also
investigate the relationship between q and t∗. Finally, we obtain a sample size
formula for weighted logrank tests and we compare the sample sizes required by
the Fleming-Harrington and CPWL tests.

4.1. Asymptotic efficiency comparisons

We first need some additional notations. Let (LRW 1
n
) and (LRW 2

n
) be two se-

quences of weighted logrank tests. Then ÃRE(LRW 1
n
,LRW 2

n
) will denote the

ARE of LRW 1
n
with respect to LRW 2

n
under a sequence of alternatives such that

AE(LRW 2
n
) is maximal. Similarly, ÃRE(LRW 2

n
,LRW 1

n
) will denote the ARE of

LRW 2
n
with respect to LRW 1

n
under alternatives such that AE(LRW 1

n
) is maxi-

mal.

Theorem 4.1. Assume that the conditions 2.1, 2.2 and 2.3 hold. Then

ÃRE(LRW 1
n
,LRW 2

n
) = ÃRE(LRW 2

n
,LRW 1

n
).

Proof. The following holds from (6) and (7) in Theorem 2.1:

ARE(LRW 1
n
,LRW 2

n
)

=

(

∫ τ

0
k1(s)
λ
θ0

(s)
∂λθ

∂θ

∣

∣

θ=θ0 (s)dΛθ0(s)
)2

∫ τ

0
(k1)2(s)

π(s)
πP (s)πT (s)

dΛθ0(s)
.

∫ τ

0 (k2)
2(s) π(s)

πP (s)πT (s)dΛθ0(s)
(

∫ τ

0
k2(s)
λ
θ0

(s)
∂λθ

∂θ

∣

∣

θ=θ0 (s)dΛθ0(s)
)2 .

Next, if LRW 2
n
has maximal AE, Theorem 2.1 implies that

k2(s) =
1

λθ0(s)

∂λθ

∂θ

∣

∣

∣

∣

θ=θ0

(s)
πP (s)πT (s)

π(s)
,

which in turn implies that:

ÃRE(LRW 1
n
,LRW 2

n
)

=

(

∫ τ

0 k1(s)k2(s)
π(s)

πP (s)πT (s)dΛθ0(s)
)2

∫ τ

0 (k1)
2(s) π(s)

πP (s)πT (s)dΛθ0(s)
.

∫ τ

0
(k2)

2(s) π(s)
πP (s)πT (s)dΛθ0(s)

(

∫ τ

0
(k2)2(s)

π(s)
πP (s)πT (s)

dΛθ0(s)
)2 ,
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=

(

∫ τ

0
k1(s)k2(s)

π(s)
πP (s)πT (s)dΛθ0(s)

)2

∫ τ

0
(k1)2(s)

π(s)
πP (s)πT (s)dΛθ0(s).

∫ τ

0
(k2)2(s)

π(s)
πP (s)πT (s)dΛθ0(s)

.

It is easily seen that this latter expression is symmetric in (k1, k2), which con-
cludes the proof.

Thereafter, we suppose that T is exponentially distributed under H0 and that
the right-censoring time C is of type I. This means that under H0, π(t) = S(t) =
exp(−at) and λ(t) = a, for t ∈ [0, τ [. Then for every q ∈ R+ and t∗ ∈ [0, τ [, we
define the function

f(q, t∗) = ÃRE(LRW q
n
,LRW t∗

n
) = ÃRE(LRW t∗

n
,LRW q

n
).

Note that f is well-defined by Theorem 4.1. The next theorem provides some
information about the relation between t∗ and q.

Theorem 4.2. Let t∗ ∈ [0, τ [. Then there exists a unique q(t∗) ∈ R+ such that

max
q∈R+

f(q, t∗) = f(q(t∗), t∗).

Let q ∈ R+. Then there exists a unique t∗(q) ∈ [0, τ [ such that

max
t∗∈[0,τ [

f(q, t∗) = f(q, t∗(q)).

Proof. If T is exponentially distributed under H0, f can be written explicitly:

f(q, t∗) =
2q + 1

(q + 1)2
1− exp(−aτ)

exp(−at∗)− exp(−aτ)

(

1−

(

1− exp(−at∗)

1 − exp(−aτ)

)q+1
)2

.

Letting

x =
1− exp(−at∗)

1− exp(−aτ)
,

f can be reparameterized as

f(q, x) =
2q + 1

(q + 1)2
1

1− x

(

1− xq+1
)2

.

Consider the partial maps q → f(q, x) and x → f(q, x). Using some standard
analysis arguments, it is tedious but straightforward to show that both functions
admit a unique maximum, which concludes the proof.

This theorem proves the existence and uniqueness of the maximum of the
partial maps q → f(q, x) and x → f(q, x). However, it is important to note
that it provides no information about the shape of the relations q → t∗(q) and
t∗ → q(t∗). Numerical methods can be used to obtain some information about

these relations. Figure 3 provides a 3D-plot of ÃRE(LRW t∗
n
,LRW q

n
) as a function

of t∗ and q. One clearly observes that for every q (respectively t∗), there is a
unique t∗ (respectively q) such that the ARE is maximal. An additional figure
is provided in the web-based supplementary document [8].
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Fig 3. 3D-plot of ARE as a function of t∗ and q.

From [7], the Fleming-Harrington test is not very sensitive to the value of q,
which is a desirable property in view of applications. But choosing the most rel-
evant q for testing a given pattern of late effects is difficult since q is not directly
interpretable in terms of late effects. On the contrary, t∗ is easily interpretable
in terms of late effects but the CPWL test is highly sensitive to a variation of
t∗. Theorems 4.1, 4.2 and Figure 3 precisely give us a way out of this dilemma.
Based on these results, we propose the following testing strategy for a given
clinical trial: 1) choose t∗ based on a priori knowledge about the expected late
effects, 2) identify and use the test FH(q) which is the closest from CPWL(t∗)
in terms of asymptotic efficiency (using Theorem 4.2).
This procedure should be relevant only if the map t∗ → q(t∗) is not too sensi-
tive to the value of t∗. Note on Figure 3 that this map is not a straight line,
thus its sensitivity to a variation of t∗ depends on t∗. But one can observe that
the range of t∗ where t∗ → q(t∗) is sensitive is limited to a relatively extreme
domain, which ensures a good stability of the choice of q for most of the t∗

values.
As an illustration, Table 2 provides the correspondence between t∗ and q

when c = 80% and r = 20%.

4.2. Simulation-based comparisons

In this simulation study, we investigate the behaviour of the CPWL test (re-
spectively Fleming-Harrington test) when the data are simulated under optimal
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Table 2

Correspondence between q and t∗ to give f(q, t∗) maximal, r = 0.2, c = 0.8

FH q = 1 2 3 4
CPW t∗(q) = 0.3 0.5 0.6 0.7

CPW t∗ = 0.2 0.4 0.6 0.8
FH q(t∗) = 0.5 1.2 2.4 5.9

Table 3

Empirical power of FH tests (respectively CPWL tests) for various qT (respectively t∗
T
)

when the data are generated under the optimal hypothesis for FH(qS) (respectively
CPWL(t∗

S
)). c = 0.8, r = 0.2, n = 2000

FH(q)
qS Logrank qT = 1 qT = 2 qT = 3 qT = 4
0 0.640 0.534 0.420 0.349 0.294
1 0.620 0.743 0.713 0.670 0.632
2 0.609 0.845 0.877 0.871 0.853
3 0.593 0.873 0.912 0.914 0.914

4 0.587 0.887 0.940 0.957 0.961

5 0.588 0.910 0.962 0.974 0.980

CPWL(t∗)
t∗
S
/τ t∗

T
= 0.2 t∗

T
= 0.4 t∗

T
= 0.6 t∗

T
= 0.8

0 0.543 0.420 0.294 0.167
0.2 0.737 0.615 0.439 0.261
0.4 0.745 0.873 0.704 0.402
0.6 0.722 0.861 0.978 0.782

alternatives for the Fleming-Harrington test (respectively CPWL test). We con-
sider two sets of scenarios for late differences (letting τ = 1 in both scenarios):

• For each qS ∈ {0, 1, 2, 3, 4}, we simulate N = 2000 samples S(qS , 2000, 0.2,
0.8). The CPWL test with t∗ = t∗T (for t∗T ranging from 0.2 to 0.8 by 0.2)
and the logrank test are applied to the N samples, and their empirical
powers are calculated.

• We simulate N samples S(t∗S , 2000, 0.2, 0.8), with t∗S ranging from 0 to 0.6
by 0.2. The logrank and Fleming-Harrington tests with q = qT (with qT
ranging from 1 to 4 by 1) are calculated on each sample and their empirical
powers are obtained.

Table 4 gives the empirical power of the CPWL test for the various combinations
of qS and t∗T (that is, for data generated under optimal alternatives for the

Table 4

Empirical power of the CPWL(t∗
T
) test when the data are generated under the optimal

hypothesis for FH(qS). c = 0.8, r = 0.2, n = 2000

qS Logrank t∗
T

= 0.2 t∗
T

= 0.4 t∗
T

= 0.6 t∗
T

= 0.8
0 0.644 0.543 0.420 0.294 0.167
1 0.650 0.715 0.719 0.624 0.425
2 0.605 0.723 0.790 0.773 0.630
3 0.578 0.707 0.831 0.873 0.783
4 0.601 0.715 0.856 0.918 0.882
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Table 5

Empirical power of FH(qT ) when the data are generated under the optimal hypothesis for
CPWL(t∗

S
). c = 0.8, r = 0.2, n = 2000

t∗
S

qT = 0 qT = 1 qT = 2 qT = 3 qT = 4
0 0.635 0.512 0.402 0.329 0.276
0.2 0.620 0.694 0.608 0.515 0.452
0.4 0.623 0.822 0.814 0.766 0.707
0.6 0.594 0.896 0.948 0.957 0.953

Fleming-Harrington test). Similarly, Table 5 gives the empirical power of the
Fleming-Harrington test when the data are generated under optimal alternatives
for the CPWL. We provide results for r = 0.2, c = 0.8 and n = 2000. Some
additional results are provided in the supplementary document [8].

As expected, we observe from Table 4 that as qS increases, the value of
t∗T which ensures the largest power for a CPWL(t∗T ) test increases (a similar
remark holds from Table 5 when t∗S increases). We also note that the power
of the Fleming-Harrington test is less sensitive to qT (for a given t∗S) than the
power of CPWL(t∗) is to t∗ for a given qS . This confirms our previous finding
that the Fleming-Harrington test is less sensitive to q than the CPWL test is to
t∗. In this sense, the Fleming-Harrington test should be preferred in practice.

4.3. Sample size calculations

Before launching a clinical trial, one needs to know how much resource is needed
to ensure that the study has enough power to detect the difference of interest. In
this section, we compare the sample sizes required by the Fleming-Harrington
and CPWL tests for testing late effects. Assuming a type I censoring scheme,
we provide a sample size formula for testing the hypotheses (3) using a weighted
logrank test.

Theorem 4.3. Let r and SP (τ) be given and assume that nT = nP = n
2 . The

sample size needed to achieve a power 1− β with a type I error α, when testing

the hypotheses (3) using a weighted logrank test, is given by:

n =
σ2
1

µ2
(z1−α/2 + z1−β)

2, (15)

where zγ denotes the quantile of order γ of a standard normal distribution and

σ2
1 =

∫ τ

0

w(s)

(

πP (s)(πT (s))2

(π(s))2
dΛθP (s) +

(πP (s))2πT (s)

(π(s))2
dΛθT (s)

)

,

µ =

∫ τ

0

w(s)
πP (s)πT (s)

π(s)
(dΛθP (s)− dΛθT (s)),

with S(s) =
S
θP

(s)+S
θT

(s)

2 .

The proof is straightforward and is therefore omitted.
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Table 6

Sample size computation for Fleming-Harrington test with different values of q (upper
table) and the corresponding CPWL(t∗) test with t∗ = t∗(q) (lower table)

FH(q)
c r Logrank q = 1 q = 2 q = 3 q = 4
0.2 0.1 838 875 820 755 697

0.2 251 252 237 220 206
0.3 129 128 122 11 11

0.5 0.1 3181 2795 2310 1953 1691
0.2 811 699 581 496 436
0.3 366 315 264 230 208

0.8 0.1 12387 9692 7454 6018 5056
0.2 2992 2332 1806 1474 1253
0.3 1281 1001 788 655 572

CPWL(t∗)
c r t∗ = 0.2 t∗ = 0.4 t∗ = 0.6 t∗ = 0.8
0.2 0.1 722 623 449 183

0.2 206 171 112 24
0.3 103 83 50 1

0.5 0.1 2571 2010 1353 580
0.2 634 481 299 87
0.3 278 204 116 13

0.8 0.1 9735 7272 4718 2027
0.2 2300 1670 1016 327
0.3 964 677 379 66

We illustrate this theorem in a short numerical study. Letting α = 0.05 and
β = 0.2, we calculate the sample size needed for testing the hypotheses (9)
(respectively (14)) using the Fleming-Harrington test (respectively the CPWL
test). We consider various settings, defined by the censoring fraction: 0.2, 0.5,
0.8 and the rate value: 0.1, 0.2, 0.3. Table 6 gives the sample size needed for the
Fleming-Harrington test (for different q) and for the corresponding CPWL(t∗)
test with t∗ = t∗(q).

For both tests, the sample size needed to achieve the prescribed power and
level increases as the censoring increases, and decreases when the rate r in-
creases. Also, for the Fleming-Harrington test, the sample size decreases when q
increases from 1 (the sample size is sometimes larger for q = 1 than for q = 0).
For the CPWL test, the sample size decreases when t∗ increases from 0. Finally,
we observe that the sample size needed for the Fleming-Harrington test is gen-
erally larger than for the CPWL test. However, the difference stays moderate
in most of the cases.

5. Application to real data: GuidAge Study

Setting of the trial. GuidAge is a randomized, parallel-group, double-blinded
trial. Elderly subjects (70 years or older) were enrolled in this trial. These sub-
jects were free of dementia and had expressed a spontaneous memory complaint
to their general practitioner in France. The subjects were randomized to ei-
ther a daily 240 mg dose of standardised ginkgo biloba extract (EGb761) or a
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placebo, and were followed-up for 5 years by their physician and in expert mem-
ory centres. A total of 712 physicians and 25 memory centres participated in
the trial. The primary outcome was conversion to probable Alzheimer’s disease.
This study is registered to ClinicalTrials.gov under the number NCT00276510.

The former statistical analysis. The former analysis of this trial was based on
the logrank test. Assuming that under EGb 761, the conversion rate from mem-
ory complaint to Alzheimer’s disease is 25% less than under the placebo, the
Alzheimer’s disease-free rate after a 5-years long follow-up is equal to 89.63% un-
der EGb 761 and to 86.18% under the placebo. The total sample size (n = 2800)
was calculated by letting α = 0.05, β = 0.2, and by taking account of the drop-
out rate over the 5 years of follow-up.

The proposed statistical analysis. The clinical trial considered here is a preven-
tion trial. Thus we can assume that a late effect exists and we suggest to use
the Fleming-Harrington test with p = 0. We need to choose q. Based on [1], we
assume that an effect occurs between the second and third years of the trial.
When t∗ ranges from 2 to 3, q lies between 1.2 and 2.4. One usually wishes to
use an integer value for q. Thus, in order to minimize the necessary sample size,
we suggest to use q = 3. Under this value, the necessary sample size is 1778.

Results and discussion. The p-value of the logrank test is 0.3044, yielding the
conclusion that there is no significant effect of the treatment. Under the former
and planned statistical analysis design, the study is thus declared negative.
But the proposed Fleming-Harrington test with p = 0 and q = 3 has p-value
0.0041. From this result, there is a very significant treatment effect and the
study would be declared positive (note that there is no contradiction between
the two conclusions, since the corresponding statistics do not test the same kind
of difference between the groups).

In order to illustrate the sensitivity of the Fleming-Harrington and CPWL
tests to q and t∗, we tested the data with q ranging from 1 to 5 and t∗ ranging
from 1 to 5. The results are given in Tables 7 and 8. The tests are significant

Table 7

Fleming-Harrington test in the GuidAge study. NS: non significant, S: significant, VS: very
significant difference

q = 0 1 2 3 4 5
Statistic 1.030 1.964 2.562 2.814 2.882 2.858
p-value 0.304 0.049 0.010 0.004 0.003 0.002

NS S S V S V S V S

Table 8

CPWL(t∗)’s test in the GuidAge study. NS: non significant, S: significant, VS: very
significant difference

t∗ = 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Statistic -0.947 -0.848 -1.68 -1.690 -2.142 -2.351 -2.096 -2.122 -2.360
p-value 0.344 0.397 0.092 0.091 0.032 0.019 0.036 0.034 0.018

NS NS NS NS S S S S S

ClinicalTrials.gov
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for every q > 1 and t∗ > 2.5. The results are less sensitive for the Fleming-
Harrington test than for the CPWL test.

6. Conclusion and discussion

We have shown that the Fleming-Harrington test statistic possesses the nice
feature of a small sensitivity to q. On the contrary, the choice of t∗ influences
substantially the outcome of the CPWL test. But t∗ can be directly interpreted
in terms of late effects, which is not the case for q. In this paper, we proposed
to combine the advantages of both statistics to define a testing strategy for late
effects in a clinical trial.

Using the asymptotic relative efficiency, we have described the relation be-
tween q and t∗. From this, we have proposed a two-step strategy for testing
late effects in a clinical trial: one may first choose t∗ (based on a priori knowl-
edge about the expected late effects) and then identify and use the Fleming-
Harrington test FH(q) which matches best with the desired CPWL(t∗) test.
Moreover, we have shown that such a procedure does not result in an unrea-
sonable increase of the necessary sample size. The proposed strategy therefore
retains the nice features of both tests (namely the interpretation of t∗ in terms
of late effects and the robustness of FH(q) to the value of q).

We considered here the Fleming-Harrington and constant piecewise weights.
Several other weight functions might be used to detect late effects. Investigating
their relative merits and generalizing our testing strategy to incorporate their
respective strength constitute a topic for future research.

Supplementary Material

Supplement to “A comparison of the constant piecewise weighted
logrank and Fleming-Harrington tests”
(doi: 10.1214/14-EJS911SUPP; .pdf).
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